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Abstract

The short-lived B meson, which consists of a heavy bottom (b)

quark and a lighter down (d) antiquark, is produced in high energy

e+e− collisions at the CESR collider and CLEO detector. The B

meson decays via the weak interaction, thus violating parity, into a

K∗
1 meson and a high-energy photon (γ). The K∗

1 meson decays via

the strong interaction into a K∗π or Kρ. The presence of K∗ and ρ

meson resonances, with the photon, permits the observation of parity

violation in B → K∗
1γ decays. This would constitute a unique ob-

servation of parity violation in weak decays to final states containing

bosons only. An analysis of simulated data (with a perfect detector)

as well as simulated data from a realistic detector (CLEO), show that

the predicted maximal parity violation should be observable. We also

estimate the statistical precision expected by the CLEO II and CLEO

III detectors, as well as design a robust enough analysis routine that

should allow for the observation of parity violation in the CLEO II and

CLEO III detectors. We find that with these cuts on the data, we are

able to get an expected background to noise ratio of 2:1. Furthermore,

assuming negligible backgrounds, we should see a 4.6σ parity-violating

effect at CLEO III for this particular decay.
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1 Introduction

The study of parity and charge-parity (CP) violation is a cornerstone of par-

ticle physics, because the universe is predominated by one “handedness” of

matter. The existence of top and bottom quarks to the simpler model of

charm, strange, up, and down quarks was postulated (long before experi-

mental verification of their existence) in order to allow parity violation in

the Standard Model.

The observation of parity violation is a powerful probe of the weak inter-

action for heavy quarks. In this thesis, we are studying the measure of parity

violation in neutral B decay modes. A Monte Carlo simulates the parity vio-

lating effects in the B → γK∗
1 decay. Preliminary analysis of generator level

data focuses on all three neutral B decay modes – 1) B0, B0 → γK0
Sπ+π−,

and 3) B0, B0 → γK0
Sπ0π0; deeper analysis focuses upon the first decay mode

of the B meson, which has the highest reconstruction efficiency.

Introductory sections discuss the nature of parity violation, B physics,

and the tools, such as the proper parity violating observables, used in the data

analysis. Subsequent sections involve “cuts,” or criteria, placed on simulated

Monte Carlo events in order to be considered candidates. These cuts are

performed in order to efficiently identify particles, choose proper particle
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combinations, and to remove the background1. Final sections involve data

gleaned from the “generator level”2, which justifies the use of our analytic

tools, as well as reconstruction of the simulated Monte Carlo.

2 Background Information

2.1 Parity and parity violation

All particles can be described by their position, momentum, and angular mo-

mentum. In particle decays, one speaks of a differential reaction rate dΓ to

a given configuration of daughter particles. Furthermore, if the differential

rate of reaction dΓ is the same under a transformation (often we think of sets

of transformations), then that transformation is a symmetry transformation.

In other words, the system “looks” the same when undergoing a symmetry

transformation. There are four general sets of continous space-time trans-

formations, and associated with each of the four continuous transformations

are conserved quantities:

1. rotations: systems under which rotations are symmetry transforma-

tions conserve angular momentum.

1signal B → γK∗

1
events are on the order of 10−5 of background events such as qq

2generator level data consists of perfect particle detection and identification
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2. spatial translations: systems under which spatial translations are

symmetry transformations conserve linear momentum.

3. time translations: systems under which time translations are sym-

metry transformations conserve energy.

4. Lorentz boosts: systems under which Lorentz boosts are symmetry

transformations conserve rest mass. Lorentz boosts are rotations of a

system in space-time.

As a further example, one can easily think of systems in which the above

transformations are not symmetric. In a magnetic field, for example, parti-

cles align in a certain manner – these do not conserve angular momentum.

A group of particles falling in a gravitational field do not conserve linear

momentum. If these same particles moved through a time-varying potential

field (such as an oscillating electric or magnetic field) which is not considered

part of the system, then the energy of the system would not be conserved.

Finally, noninertial systems (such as those in gravitational fields) do not

conserve rest mass.

There are also three discrete transformations associated with the contin-

uous transformations:
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1. time reversal (T)

2. spatial reversal (S): a system which is symmetric under spatial re-

versal conserves parity

3. inversion of internal properties (i.e. charge or C): a system

which is symmetric under this operator is its own antiparticle.

In nature, It is believed that CPT (the product charge × parity × time)

is a conserved quantity. Furthermore, reactions involving the gravitational,

electromagnetic, and strong forces conserve all three quantities separately.

Weak decays, however, violates C and P maximally; however, the weak in-

teraction has been observed to violate CP slightly, and is believed to violate

the combination CT and PT slightly, in such a way that CPT is conserved.

The effect of these discrete transformations on particles with spin is a

particularly interesting picture. All particles with spin have a certain spin

polarization along their direction of motion. A particle which is right-handed

circularly polarized has a spin component pointing along its direction of

motion, or a component, with the direction of motion pointing along the +z

axis, “rotating” counterclockwise; likewise, a left-handed circularly polarized

particle has a spin component pointing away from its direction of motion,
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or “clockwise” as seen from the +z axis. A (semiclassical) diagram should

help elucidate this quantum-mechanical concept: A simple representation of

Figure 1: (left) Right-handed circularly polarized (RCP) particle. Top view
represents a view in which the +z axis is along the direction of motion.

Figure 2: (right) Left-handed circularly polarized (LCP) particle. Top view
represents a view in which the +z axis is along the direction of motion.

a system that violates parity is in terms of spin. Suppose that we have a spin

0 particle decaying into two spin 1 particles. One candidate here is the decay

π0 → γγ. Note that the decay π0 → γγ conserves parity. We are using this

decay only as an example. For convenience, we show the decay in the rest

frame of the π0. The component of spin for these +1 particles along their

direction of motion may be -1 (LCP), 0 (Transverse polarization, which is not

possible for real photons), +1 (RCP). From conservation of linear momentum

these photons move opposite each other. Angular momentum must add to

zero, so both photons must be LCP or both must be RCP. Parity conservation

occurs when the probability of getting a system of two LCP photons is the
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same as getting two RCP photons (see figure 4).Parity violation occurs when

the probability of getting both photons RCP is different from getting both

photons LCP (see figure 3).

CP violation is a situation in which the probability distribution is different

if we switch particles with antiparticles. Thus, in the case above, charge-

parity violation would be observed if we get one distribution of LCP and

RCP particles (from a spin 0 particle), with a parent particle, and a different

distribution of LCP and RCP particles with a parent antiparticle. It is not

known whether there will be significant CP violation in the B0 → γKππ

decay, which is analyzed in this paper. We except parity violation to be

large, but the Standard Model does not have a good prediction for the level

of CP violation which we expect to see.

3 Quark Physics

3.1 Standard Model

The basic building blocks of hadrons are quarks. The Standard Model con-

tains three families of quarks which form into mesons (i.e. quark-antiquark

pairs) and baryon (three quarks): 1) up and down quarks, 2) charm and
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π0
γγ

π0
γγ0%

LCP LCP

RCP RCP

direction of linear momentum

direction of spin axis

z-axis

100%

π0
γγ

π0
γγ

50%

LCP LCP

RCP RCP

direction of linear momentum

direction of spin axis

z-axis

50%

Figure 3: (left) An example of parity violation in the π0 → γγ decay. Such
parity violation does not occur in nature. Note that the proportions of LCP
and RCP decays are not equal. Here we have maximal parity violation.

Figure 4: (right) Parity conservation, here in the π0 → γγ decay. The
proportions of LCP and RCP decays are equal.

strange quarks, and 3) top and bottom quarks. The Standard Model de-

scribes a basic universe with the following symmetries among the different

particles: the first generation consists of up and down quarks (u and d) and

electrons and electron antineutrinos (e and νe); the second generation consists

of charm and strange quarks (c and s) and muons and muon antineutrinos (µ

and µµ); the third generation consists of top and bottom quarks (t and b) and

tauons and tau antineutrinos (τ and ντ ). Associated with these leptons and

quarks are four vector (spin-1) bosons: photon (γ), gluon (g), W±, and Z0.

However well the Standard Model describes particle decay processes, it does

not explain the graviton, does not predict the masses and other properties of
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particles, and consequently requires a variety of parameters to explain these

results.

Experimental results used to search for a better theory which includes the

Standard Model would need to search for phenomenon, such as CP violation,

which are not explained by the Standard Model, to determine the parameters

required in the Standard Model to a higher degree of accuracy, and to observe

new phenomenon predicted by the Standard Model. One example is the

Higgs boson, which is theorized to give masses to the fundamental particles.

3.2 CKM Matrix

The CKM (Caribbo-Kobayashi-Maskawa) matrix is a unitary matrix which

describes quark mixings via a flavor-changing charge current [1]. In the 3×3

unitary matrix, there are nine elements which describe mixings between +2/3

charged quarks (u, c, and t) with -1/3 charged quarks (d, s, and b). Because

of its unitarity, the CKM matrix has four independent elements – three real
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components and a complex phase. The CKM matrix is represented below:

VCKM =

















Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

















(1)

The above describes flavor-changing mixings that may occur with quarks.

No first-order flavor-changing neutral currents may occur, therefore we may

not see decays such as s → dZ0. The following, shown below refers to

the experimentally-determined magnitudes of the elements |Vij| of the CKM

matrix [2].

|VCKM | ≈

















0.975 0.22 0.003

0.22 0.97 0.04

0.01 0.04 0.999

















(2)

Actual measurements of the CKM matrix are done indirectly by experimen-

tally determining angles in 6 “unitarity triangles,” by measuring the char-

acteristics of largely B meson decays. Any possible flavor-changing neutral

currents, under the Standard Model, must occur via some second-order in-

teraction, such as in the net decay b → sγ, which occurs via b → tW−
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and W−t → sγ (see figure 5 and equation 8). We can see this particular

decay because the decay chains b → u → s and b → c → s are “sup-

pressed.” First, from equations 1 and 2, |VbtV
∗
ts| >> |VbuV

∗
us|. Second, al-

though |VbtV
∗
ts| ≈ |VbcV

∗
cs|, and B(b → sγ)/B(b → c) ≈ 10−4, b → c occur

with a high enough frequency that b → sγ decays may also be observed.

CP violation will be most apparently manifest by complex phases in the

CKM matrix with nonzero imaginary elements – that is, mixing elements

among quarks will be different from that among antiquarks. In fact, in

order to bring CP violation into the CKM matrix, Kobayashi and Matsuko

postulated an extra dimension in the 2× 2 matrix (corresponding to the two

generations of quarks and leptons known at that time). This follows from the

fact that a 2× 2 unitary matrix would only be real, thus no parity violation.

B mesons provide a useful test of the parity and possibly CP violating

portions of the Standard Model, as well as possible extensions to the Stan-

dard Model, due to the fact that B mesons consist of one third generation

quark. Furthermore, B mesons also decay through an immense number of

different decay channels, many of which provide tests of various aspects of

the Standard Model and heavy quark physics.
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4 B physics

4.1 B0, B0 parity violation

Parity violation has been observed in inclusive semileptonic B meson decays

[5] and exclusive semileptonic B meson decays [6]. Parity violation is also

expected to be just as strong in B hadronic and electromagnetic decays. Here

we outline a method for measuring the degree of parity violation in the final

state of the B0 → K∗
1γ decay.

The photon is expected to be strongly polarized due to parity violation

in the weak interaction. However, we cannot measure the polarization of

the photon (i.e. its energy is too high), and all we have are the momenta

of the final decay products. The simplest parity-violating observable that

we can measure is some observable constructed out of the triple product

pγ · pK × pπ1
, where pπ1

is the pion such that mKπ1
> mKπ2

(see figure 8).

Thus, this parity-violating observable, cos θH , or the cosine helicity angle, is

defined as the following:

cos θH = p̂γ · norm(pK × pπ1
) (3)

cos θH =
pγ · (pK × pπ1

)

|pγ| |pK × pπ1
| (4)
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Where all momenta are taken in the K1 rest frame.

However, this does not necessarily produce a parity-violating observable,

although we have resolved the ambiguity of which orientation to measure

this triple product. The physics of the decay must be able to distinguish

between the +1 and -1 helicities of the K∗
1 . This can only occur in a small

class of decays, such as a1 → 3π and K1 → Kππ because these decays

proceed via two or more amplitudes which interfere. This interference sign

flips under parity, allowing one to distinguish between +1 and -1 helicities.

This explanation is covered in greater detail in the section “Parity-Violating

Observations.”

Although the B0 → K∗
1γ decay has not been observed, the efficiency

for reconstructing the final state is relatively high. There will be hundreds

of events in CLEO III, which will be accumulated over the next few years,

allowing this statistical analysis.

4.2 Calculation of the PV decay rate in B0 → γK∗
1

We are splitting the decay B → γKππ into two independent portions: 1)

B0 → γK∗
1 , which we analyze in this section, and 2) K∗

1 → Kρ,K∗π. As

stated in the abstract and shown in figure 5, the B0 consists of a b and d
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quarks. The decay B0 → γK∗
1 , by means of b → sγ, occurs over 10−25

seconds over a distance of 10−18 meters; the decay of the K∗
1 occurs over a

10−23 seconds over a distance of 10−16 meters. Therefore we may consider

the B0 decay as independent of the K∗
1 .

The decay we are studying can be described using relativistic quantum

field theory. One may write out down the expression for the decay rate Γ,

fully differential in all the momenta of all the particles. The differential decay

rate is given by the following equation:

dΓ =
1

2mB

|M|2dPS2 (5)

Where mB is the mass of the B0 meson, dPS2 is a differential element of the

two-particle (γ,K∗
1 phase space, and M is the quantum mechanical matrix

which describes the decay B0 → γK∗
1 . The two dimensional phase space is

given by the following:

dPS2 =
1

8π

(

2pγ

mB

)

=
m2

B − m2
K1

8πm2
B

(6)

Where mK1
is the mass of the K∗

1 meson. Figure 5 is a sketch of the B0 →

γK∗
1 decay. Here is the form of the quantum mechanical decay matrix, which

17



-18
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QUARK LEVEL

K1
*

B0

d

b s

10 γ

t

W

K1
*
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-12
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MESON LEVEL

B0

γ
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*

γ
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*

z-axis

γ

LCP LCP

RCP RCP

99%

~1%

direction of linear momentum

direction of spin axis

Figure 5: (left) The decay B0 → K∗
1γ at the meson and the quark levels. The

decay b → sγ proceeds via an expected parity-violating “penguin” decay.

Figure 6: (right) Expected parity violations in the B0 → K∗
1γ decay. Parity

conservation occurs when the probability for both decay processes, as shown
above, are equal. Parity violation occurs when the probabilities of both
processes are unequal.

contains all the weak-interaction physics in this decay:

M = G2ε
µ
γ

〈

K∗
1 |Ĵµ|B0

〉

(7)

Where εµ
γ is the photon polarization and G2 is the weak radiative penguin

coupling:

G2 =
GF√

2

e2

4π2
VbtV

∗
tsF̃2(m

2
t /m

2
W ) (8)
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F̃2 is a known function of the top quark mass that characterizes these penguin

loops [7].

Ĵµ describes a magnetic transition between the B0 and the K∗
1 ; it must

include the polarization vectors εK1
and εγ but also the 4-vectors PK1

and

Pγ . It consists of both polar and axial vectors in this nontrivial combination:

εµ
γ

〈

K∗
1 |Ĵµ|B0

〉

= iǫµαβδε
µ
γε

α
K1

P β
γ P δ

K1
T1(0)mBh+

[(εγ · εK1
)(Pγ · PK1

) − (εγ · PK1
)(εK1

· Pγ)]T2(0)mB

(9)

T1 is the polar vector and T2 is the axial vector hadronic form- factors eval-

uated at the 4-momentum transfer q2 = (PB − PK1
)2 = P 2

γ = 0. h = ±1

for V ∓ A currents, and in the Standard Model, h = 1, and mB is the B

meson mass, inserted to make T1,2 unitless. The above is the only nontrivial

combinations of four independent 4-vectors, since PK1
· εK1

= Pγ · εγ = 0 for

these divergenceless currents.

Now we evaluate the above in the K∗
1 rest frame, taking the photon

direction to be along the ẑ axis. The components of the four-momenta in
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this frame become:

εγ =

(

0,± 1√
2
,− i√

2
, 0

)

(10)

εK1
=

(

0,∓ 1√
2
,− i√

2
, 0

)

(11)

Pγ = (Eγ, 0, 0, Eγ) (12)

PK1
= (mK1

, 0, 0, 0) (13)

Where the + sign corresponds to RCP photon and - sign corresponds to LCP

photon; Eγ = (m2
B − m2

K1
)/(2mK1

). Note that εγ · PK1
= εK1

· Pγ = 0. Note

that εγ · εK1
= 1 and Pγ ·PK1

= EγmK1
= 1

2
(m2

B −m2
K1

). Evaluating the first

term of equation 9, we get mBEγmK1
T1.

The coefficient contributing to T2 may be found by noting that the fourth

rank Levi-Civita tensor ǫµαβδ is antisymmetric under the interchange of its

indices. Thus, it is nonzero only when all its indices are different. We may
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rewrite the coefficient associated with T1 as the following:

ǫµαβδε
µ
γε

α
K1

P β
γ P δ

K1
= ǫxyztε

x
γε

y
K1

P z
γ P t

K1
+ ǫyxztε

y
γε

x
K1

P z
γ P t

K1
(14)

=

(

± 1√
2

) (

− i√
2

)

EγmK1
−

(

∓ 1√
2

)(

− i√
2

)

EγmK1
(15)

= ∓iEγmK1
(16)

The two nonzero terms in the decay matrix M have equal magnitude, and

thus:

M = e
G2√

2
VbtV

∗
tsF̃2(m

2
t /m

2
W )

m2
B − m2

K1

2
[±hT1(0) + T2(0)]mB (17)

And the decay rate Γ, the decay rate for RCP photons dΓ+, and the decay

rate for LCP dΓ− are given by the following equations:

dΓ± =
G2

F α|VbtV
∗
ts|2m5

B

16π
| ± hT1(0) + T2(0)|2 (18)

Γ =
G2

F α|VbtV
∗
ts|2m5

B

8π
[|T1|2 + |T2|2] (19)

Where we have summed over both helicities in equation 19. Here, the parity-
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violating asymmetry is given by:

AγK1
=

dΓ+ − dΓ−

dΓ+ + dΓ−

=
2hT1T2

|T1|2 + |T2|2
=

2hT2/T1

1 + |T2/T1|2
(20)

It is estimated that for B → γK∗(892), T1 ≈ T2 ≈ 0.115, which leads to

maximal parity violation and a completely polarized photon [8]. It is assumed

that the symmetry is also large for the decay B → γK1.

K1
π1

π2

K*
Κ

K1
π2

π1

K*
Κ

π1

π2

K1

ρ

Κ

Figure 7: various resonances in the decay K1 → Kππ. The first decay is
K1 → K∗π2, K∗ → Kπ1. The second decay is K1 → K∗π1, K∗ → Kπ2. The
third decay resonance is K1 → Kρ, ρ → π1π2. The more resonances there
are, the larger the number of interference between the resonances, and there
is expected to be a larger parity-violating effect.
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*

n̂
K 1

π2

π1

cos

K

θ

K

H γ
Figure 8: The K∗

1 decay plane. All 4-momenta are taken in the rest frame
of the K∗

1 . Note also that the normal to the plane is defined as the nor-
malized cross product of the kaon three-momentum with the “faster” pion
3-momentum.

4.3 CP violation

If T2/T1 were complex, with a weak phase which flips sign under parity,

then the parity-violating asymmetry AγK1
will be different for B than for B.

The penguin decay should contribute to both the polar vector V and axial

vector A portions of the current with amplitudes T1 and T2 with only strong

interaction phases, not weak interaction phases. The Standard Model does

not predict CP violation in this decay. However, any CP violation we see

would signal beyond-Standard Model physics.

A simple test of CP violation in this B → γKππ decay can be found by

the following. First, B0 → γK−π+π0 only (i.e. not its charge-conjugated
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combination, or γK+π−π0), while B0 → γK+π−π0. Supposing we have

maximal parity violation, and we measure some parity-violating observable.

If we measure a different value for the observable for B0 → γK−π+π0 decays

relative to B0 → γK+π−π0 decays, then we observe parity violation – a

signal of physics beyond the Standard Model. CP violation necessarily does

not occur in the other two neutral B decay modes – B0, B0 → γK0
Sπ+π−,

B0, B0 → γK0
Sπ0π0.

4.4 Parity-Violating Observations

The derivation of a parity-violating observable, as defined in equations 3

and 4 are borrowed directly from Weinstein’s derivation in “Parity and CP

Violation in B → γKππ.”

There is no way to measure the polarization of the photon, so we must

measure the equal (but opposite) polarization of the K1 via its decay prod-

ucts. One cannot distinguish +1 and -1 helicities in V → PP decays, such

as K1 → K∗π; the decay angle is cos2 θ in this case.

The decay rate for a polarized K1 → Kππ is given by the following
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expression:

dΓ(K1 → Kππ) =
1

2mK1

∣

∣gK1
gKππEµ

K1
JK1µ

∣

∣ dPS3 (21)

Where gK1
gKππ is the roughly constant strong mesonic coupling, and Jµ

K1
is

the decay current, given below. The three-particle phase space is given by:

dPS3 =
1

(2π)316m2
K1

dm2
Kπ dm2

ππ

d cos θH

2

dα

2π

dφ

2π
(22)

Where cos θH is the cosine of the helicity angle, defined as in equations 3 and

4. Furthermore, α and φ are, for this problem, uninteresting azimuthal angles

defined among the decay products. If we take Eµ
K1

= A+Eµ
+ + A−Eµ

− + A0Eµ
0 ,

then we get a rate of the following form:

dΓ

d cos θH

∝
∣

∣

∣

∣

H+
1 + cos θH

2
+ H0 sin θH + H−

1 − cos θH

2

∣

∣

∣

∣

2

(23)

where H+, H−, H0 are helicity form factors that can be related to A+, A−, A0

but that also depend on Jµ
K1

. If H+ 6= H− then parity is evidently violated.

In our case, if T1 = T2, then parity is maximally violated and the photon

is completely polarized; by helicity conservation so is the K1, so A− is the
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only nonzero term. This does not necessarily lead to H− being the only

nonzero helicity form factor. As mentioned above, there is an ambiguity in

the direction of the normal to the Kππ decay plane, which results in an

ambiguity in the sign of cos θH .

However, this decay proceeds via an intermediate K∗ resonance, and there

are two amplitudes that contribute. For example, for D0 → K+π−π0, the

amplitudes are for D0 → K∗+π− and D0 → K∗0π0. There is a region in

the Dalitz plot where these two components interfere (see figure 12). The

interference term is of opposite parity than the direct terms, leading to a

non-zero expectation value for the helicity angle < cos θH >. This ex-

pectation value should be proportional to the parity-violating asymmetry

AγK1
= (dΓ+ − dΓ−)/(dΓ+ + dΓ−).

We analyze this by replacing EK1
(which cannot be measured directly)

with the K1 → Kππ decay current (Fig. 7), which plays the role of EK1
in

the Feynman calculus when the K1 decays. This current must depend only

on the daughter particle momenta, and, like EK1
, must be transverse to PK1

.
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This uniquely determines the Lorentz structure of the current:

Jµ(K1 → Kππ) = T µν(K1) [F1(m
2
Kπ1

)Tνα(Kπ1)(PK − Pπ1
)α

+ F2(m
2
Kπ2

)Tνα(Kπ2)(PK − Pπ2
)α

+ F3(m
2
π1π2

)Tνα(π1π2)(Pπ1
− Pπ2

)α ]

(24)

where the (axial)vector transversality projectors are T να = −gνα+P νPα/P 2.

F1, F2, and F3 are more hadronic form-factors These, however, are given by

the resonance dominance model; they are simply Breit-Wigners for the K∗

(F1, F2) or the ρ meson (F3). By isospin-Bose symmetry, F1 and F2 should

have equal normalizations at equal values of their arguments. Thus, they are

given by:

F1,2 =
CK∗

m2
K∗ − m2

Kπ1,2
− imKπ1,2

ΓK∗

, (25)

F3 =
Cρ

m2
ρ − m2

ππ − imππΓρ

(26)

The form factors are complex (strong interaction phases). The values of CK∗

and Cρ can be determined from the K1 branching fractions (best determined

by CLEO [3]). Note that there are two K1 mesons (K1(1270) and K1(1400))

with different branching fractions to K∗π and Kρ (and other modes). This
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is a subtlety which does not concern us too much at this level of analysis.

This current will appear twice in |M |2, and the interference term will

have both real and imaginary parts (maximum in the vicinity m2(Kπ1) ≈

m2(Kπ2) ≈ m2(K∗)). The imaginary part will be odd under the exchange

π1 ↔ π2 and thus will be parity-odd. This permits the distinction between

helicity +1 and −1 decay amplitudes in the K1 decay.

Note also that there also exists a (small) Wess-Zumino term of the form

ǫµναβP ν
KPα

π1
P β

π2
which has opposite parity from the F1,2,3 terms, providing yet

another non-zero effect the parity-violating measurables. It is expected to be

a small contribution, and is neglected here, but it is an important source of

systematic uncertainty.

5 Data Analysis

5.1 Asymmetry statistical analysis

The simplest statistical test involves counting the number of events, out of

the total number N , in which cos θH > 0, labeled N+, and the number of

events out of N in which cos θH < 0, labeled N−. N+/N is an estimate of

dΓ+/Γ, and N−/N is an estimate of dΓ−/Γ. Thus, for each combination of
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polar and axial vector form factors T1 and T2, there is the following parity-

violating asymmetry observable, which should scale linearly with the parity-

violating parameter (see align 20):

AγK1
=

N+ − N−

N+ + N−

(27)

The errors on the quantities N+ and N− are given by

σ+ =
√

N+ (28)

σ− =
√

N− (29)

The error on the quantity A is then

σA =
2N+N−

(N+ + N−)2

√

σ2
+

N2
+

+
σ2
−

N2
−

=
2N+N−

(N+ + N−)2

√

1

N+

+
1

N−

(30)

5.2 Regression fit analysis

For each value of the parity violating parameter, we fit the distribution of

the cosine of the helicity angle to a quadratic of the following form, where

x = cos θH and N is a normalization constant, equal to twice the number of
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events times the bin width:

R(x) = N
(

a

2a + 2/3c
+ Px +

c

2a + 2/3c
x2

)

(31)

We modified T1 from 0 to 1 so that the independent parity-violating param-

eter 2T1T2/(T
2
1 + T 2

2 ) went from 0 to 1 in steps of 0.1. We then constructed

this parity-violating parameter and its error:

F =

1
∫

0

R(x) dx −
0
∫

−1

R(x) dx

1
∫

−1

R(x) dx

= P (32)

The beauty of this method is that one does not require the correlation matrix

between the three variables a, c, and P in order to determine the parity-

violating parameter; the parity-violating parameter is merely P , whose errors

can be quickly calculated using the MN FIT software package. In addition,

we are interested only in the parameters N and B; The parameter a was

fixed in order to reduce the statistical error in the fit, which in turn reduces

the correlation between the “irrelevant” parameters a and c and the relevant

parameters N and B, and hence their errors, thus σF = σP .
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5.3 Efficiency

The method of analysis described with the Monte Carlo data applies here.

The hadronic form factor T1 is modified from 0 to 1, with T2 = 0.115, in such

a manner that the parity-violating parameter 2T1T2/(T
2
1 + T 2

2 ) ranges from

0 to 1 in steps of 0.1. To get a model for the efficiency, let N be the number

of events, A be the number of mode reconstructions, and NA = N − A

be the number of non-reconstructed events. Then we have the following

relation, considering in the limiting case of large N that NA and A behave

independently and according to Poisson statistics:

ǫ =
A

A + NA
(33)

σǫ =

√

(

∂ǫ

∂A

)2

σ2
A +

(

∂ǫ

∂NA

)2

σ2
NA (34)

Note the following two relations:

∂ǫ

∂A
=

∂

∂A

(

1 − B

A + NA

)

=
B

(A + NA)2
= ǫ

NA/A

N
(35)

∂ǫ

∂NA
=

∂

∂NA

(

A

A + NA

)

= − A

(A + NA)2
= −ǫ

1

N
(36)
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Simplifying 34, we get the following relation, since σA =
√

A and σNA =

√
NA:

σǫ = ǫ

√

NA2/A2

A2
σ2

A +
1

N2
σ2

NA = ǫ

√

NA2/A

N2
+

1 − A/N

N
(37)

Note that A = Nǫ and B = N(1 − ǫ). Then we have

σǫ = ǫ

√

(1 − ǫ)2

ǫN
+

1 − ǫ

N
= ǫ

√

(1 − ǫ)(1 − ǫ + ǫ)

ǫN
=

√

ǫ(1 − ǫ)

N
(38)

6 Generator Level Analysis

6.1 Introduction

The Monte Carlo simulates the particle decays and the particles’ momenta

according to the following: first, conservation of momenta and energy; sec-

ond, the model (see section 4) that describes the parity violating B → γK∗
1

decay, and the resonant structure of the K∗
1 decay; and third, the specific

decay (such as B0 → K+π−π0). The code for this parity violating Monte

Carlo was written by Dr. Alan Weinstein.

In the Monte Carlo simulation, the K0
S has a lifetime (≈ 8.9×10−11) [9] too
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short to exit the drift chamber, while the K0
L, with its much longer lifetime

(5.17± 0.14× 10−8 s) [9], often leaves the detector before decaying. The K0
S

can be detected with a reasonable (≈ 20%) efficiency by reconstruction from

its daughter particles, while the K0
L is much more difficult to detect. In data

analysis using a simulated CLEO detector, one usually searches for K0
S and

not K0
L.

The Monte Carlo simulates the decays B0 → K∗
1γ, K∗

1 → K∗π (two

combinations, one for each pion), and K∗
1 → Kρ (one combination). The

final combinations analyzed by the Monte Carlo are B0 → γK+π−π0, B0 →

γK0
Sπ+π−, and B0 → γK0

Sπ0π0.

Generator level data contains particle ID and ancestry for all particles

produced in an event. The feasibility of the parity-violating model is most

easily tested through the data taken at the generator level for the following

obvious reasons; 1) the efficiency and resolution for reconstruction are perfect

since particle identification and momenta are perfect, and 2) there are back-

grounds (i.e. BB or qq. However, a reconstruction of the simulated Monte

Carlo has imperfect efficiency, a finite resolution, and contains background.
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6.2 Kinematic Plots of B Decay at the Generator Level

Attached to these figures are plots of the B decay’s kinematic quantities

(momenta, energies, angles, and invariant masses) at the generator level,

or the level where we have perfect particle identification. The mass of the

particle combinations Kπ and ππ are peaked about the resonant masses of

the particles. The Dalitz plots also show evidence of the resonance K∗ and

ρ. All these plots are taken with only this simulated decay chain B0, B0 →

γK+π−π0 (see figures 10, 11, 9, 12). Plots generated from the other two

neutral B decay chains, although not shown, are identical to these kinematic

plots, within statistical fluctuations.

34



Figure 9: The distribution of the parity-violating triple product, cos θH (a)
where the hadronic form-factor T1 = 0 (identical to T2 = 0) (b) where T1 =
T2 6= 0. This is taken from generator level data for the B0 → γK+π−π0

decay.
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Figure 10: Dynamics for the decay B → γK∗
1 , K

∗
1 → Kππ via K∗π and Kρ,

for Monte Carlo level data: (a) photon energy spectrum, (b) kaon momentum
spectrum, (c) pion momentum spectrum, (d) Kππ mass spectrum. This is
taken from generator level data for the B0 → γK+π−π0 decay.
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Figure 11: More dynamics for the decay B → γK∗
1 , K∗

1 → Kππ via K∗π or
Kρ, for MC data. (a) The folded Dalitz plot, with mKπhigh

vs mKπlow
(b)

Kπ mass spectrum (two entries per event). (c) ππ mass spectrum. (d) The
folded Dalitz plot, with mKπhigh

vs mKπlow
in the K∗ mass region. This is

taken from MC level data for the B0 → γK+π−π0 decay.
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Figure 12: Folded Dalitz plot for (a) events in which the parity-violating
triple product is greater than zero, (b) where the product is less than zero,
and (c) asymmetry plot ((a−b)/(a+b)), after normalization of plots to equal
areas. Note that the interference effect is strongest at the K∗ mass in both
diagrams. This is taken from MC level data for the B0 → γK+π−π0 decay.
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6.3 Statistical Analysis of Generator-Level Data

Shown below are the plots of the asymmetry observable A and the parity-

violating observable P , as defined above, for the three decay modes of the

neutral B, B0, B0 → γK±π∓π0, B0, B0 → γK0
Sπ+π−, and B0, B0 → γK0

Sπ0π0

(for which no observable parity violation is expected, since the decay prod-

ucts are all CP eigenstates π0, K0
S). Furthermore, table 1 gives the following

information for all three decay chains: 1) A and P with statistical errors,

and 2) the number of standard deviations these values, at maximal parity

violation, are from parity conserving values of A = 0 and P = 0.

As a test of our ability to measure the parity-violating parameter, 2T1T2/(T
2
1 +

T 2
2 ) for observed values of the asymmetry A and P , for each Monte Carlo

sample (usually 11) in each neutral B decay mode, we vary the value of

the parity-violating parameter and measure the asymmetry A (see figures

13 - 14) or the regression parity violating observable P (see figures 16 - 18).

Thus, for a measured A or P , we can extract the parity violating parameter

2T1T2/(T
2
1 + T 2

2 ), and hence T1/T2, up to statistical accuracies.

Plots of linear trends between the parity violating parameter and the

parity violating observables A and P look similar. However, the data must be

reconstructed from particle tracks. Charged particles, such as π±, are much
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more efficiently identified than π0s. Furthermore, the asymmetry observable

A and the parity-violating observable, P should be similar for the charged

B decay modes as for the neutral B decay modes.

Table 1: Maximal parity-violating values of A and P for three neutral B
decay modes. Sample sizes are 10,000 events per sample. “σ in A” and “σ
in P” are number of standard deviations from A and P for maximal parity
violation.

decay mode A σ in A P σ in P
B → γK±π∓π0 0.1994 ± 0.0095 20.99 0.20473 ± 0.0091 22.50
B → γK0

Sπ+π− 0.1884 ± 0.0098 19.22 0.18465 ± 0.0092 20.07
B → γK0

Sπ0π0 0.1906 ± 0.0098 19.45 0.19406 ± 0.0092 21.09
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Figure 13: (left) Regression plot using asymmetry observable. For maximal
parity violation, A = 0.1944 ± 0.0095. This is taken for the decay chain
B0, B0 → γK±π∓π0.

Figure 14: (middle) Regression plot using asymmetry observable. For maxi-
mal parity violation, A = 0.1884± 0.0098. This is taken for the decay chain
B0, B0 → γK0

Sπ+π−.

Figure 15: (right) Regression plot using asymmetry observable. For maximal
parity violation, A = 0.1906 ± 0.0098. This is taken for the decay chain
B0, B0 → γK0

Sπ0π0.
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Figure 16: (left) Plot of observable B vs. parity-violating parameter
2T1T2/(T

2
1 + T 2

2 ). This is taken for the decay chain B0, B0 → γK±π∓π0.

Figure 17: (middle) Plot of observable B vs. parity-violating parameter
2T1T2/(T

2
1 +T 2

2 ). For maximal parity violation, P = 0.18465±0.00920. This
is taken for the decay chain B0, B0 → γK0

Sπ+π−.

Figure 18: (right) Plot of observable B vs. parity-violating parameter
2T1T2/(T

2
1 + T 2

2 ). For maximal parity violation, P = 0.1847 ± 0.0092. This
is taken for the decay chain B0, B0 → γK0

Sπ0π0.
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7 Reconstruction Background

7.1 Introduction (CLEO Detector and CESR Collid-

ers)

The detection of BB meson pairs, which includes an analysis of this decay,

occurs at the CESR (Cornell Electron-positron Storage Ring) collider, a B

meson factory at Cornell University. The basic schematic diagram of the

upgraded detector (i.e. used for CLEO III) is shown in figure 19. The

collider is an accelerator that collides electron-positron pairs at a center of

mass energy of 10.58 GeV (to create BB pairs) and at a center of mass energy

of 10.56 GeV (to analyze the behavior of continuum background qq pairs).

A diagram of the CESR collider is shown in figure 21.

A diagram (see figure 20) of the cross section of e−e+ collision depicts

the various Υ resonances at a range of collision center-of-mass energies. The

BB events are produced at the peak of the broad Υ4s resonance for 2/3 of

the run time and qq continuum events are produced off resonance for 1/3 of

the run time of the CESR collider. The beam is run off resonance in order

to better understand the continuum backgrounds in BB events.
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Figure 19: Simplified cartoon of various angular detection “thresholds” for
the CLEO detector. The angle is measured from the main axis of the de-
tector. In the data analysis, for example, only showers that lie within the
barrels are used, i.e. where | cos θ| < 0.8.
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Figure 20: Plot of the various Υ resonances, taken at the CESR collider with
the CLEO detector, as a function of center-of-mass energy in e−e+ collisions.
This analysis focuses on Υ4s resonances, which is especially broad and only
barely above background, and produces BB pairs. The CESR collider oper-
ates 1/3 of the time at Ecm = 10.56 GeV, to observe qq backgrounds, and
2/3 of the time at 10.58 GeV, to observe BB backgrounds.
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Figure 21: Schematic of the CESR (Cornell Electron-positron Storage Ring),
depicting the linear accelerator, storage ring, and CLEO detector.
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7.2 Analysis Chain

In general, e+e− collisions in the CESR collider produce particles, such as

photons and pions, which enter the CLEO detector. The CLEO detector

registers events within the drift chamber and the calorimeters. Events within

the drift chamber and calorimeter are then reinterpreted as particle showers

and tracks, which are then identified as the various decay products due to a

collision event.

An analysis of the reconstruction consists of reconstructed data. From

data on the showers and tracks simulated in the CLEO detector, to find

that particular decay and analyze the data. The diagnostic consists only of

determining whether we get the decay B → γKππ. The analysis chain is

shown in figure 22 and consists of the following important steps in the full

analysis, which is shown in figure 22:

1. In simulation mode the Monte Carlo event generator simulates events

containing the decays of interest. This Monte Carlo simulates par-

ticles, such as pions and photons, and events just as those observed

in detectors. Another program, CLEOG, simulates the response of the

CLEO particle detector. CLEOG simulates raw data such as those seen

within the CLEO detector. This raw data consists, in our analysis, pri-
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marily of hits within the drift chamber and energy showers within the

calorimeter. See figure 19 for a schematic of the CLEO detector.

2. The real data consists of a collision due to the CESR collider within

the CLEO detector, and the creation of “hits” within the drift chamber

and energy showers within the calorimeter.

3. Both simulated and reconstructed data pass through a second routine,

PASS2, which reconstructs both the simulated or real detector “hits”

into showers and tracks.

4. The data are organized into ROAR “common blocks,” or vectors and

matrices, which contain reconstructed particle data used for further

analysis. The data are identical for the full Monte Carlo as for the

data.

However, due to its complexity, the normal analysis chain consumes many

seconds of CPU time through the experimental data and full simulated Monte

Carlo. Therefore a much faster detector simulator, TRKSIM, is used; among

its disadvantages, however, is the fact that the simulated detector behaves

simplistically – that is, detector inefficiencies, resolutions, backgrounds, and

pathologies are parametrized.

48



Monte Carlo

Event Generator

simulated CLEO

CLEO G

CESR Collider

and Events
CLEO

PASS 2

Analysis
ROAR

Analysis

TRKSM

SIMULATION

DATA

Figure 22: Analysis chain for CLEO data (denoted by DATA) and the full
CLEO event simulation and detection Monte Carlo (denoted by SIMULA-
TION). TRKSIM is shown as a dotted arrow that bypasses the full analyses.
Note that TRKSIM bypasses many of these steps and is much faster, although
less accurate, than the full analyses.
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Figure 23: A fully simulated Monte Carlo decay, depicting tracks caused by
“hits” within the CLEO drift chamber. Shown here, neutral particles such
as photons, as well as charged particles, leave showers in the calorimeter.
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8 Cuts

8.1 Introduction, Rationale

Cuts are constraints or criteria that certain sets of data must pass pass in

order to be analyzed. For example, a common cut is that showers (photons

and other neutral particles which deposit energy within the calorimeter) and

tracks (charged particles which deposit energy within the detector’s drift

chamber) must lie within a certain angular region of the detector (see figure

19).

There are two general types of cuts on the data: 1) signal selection cuts,

which concerns the proper identification of particles and the reconstruction

of the decay of interest, and 2) background suppression.

The background consists of isotropic BB backgrounds as well as the “jet-

tier” qq backgrounds, where q is a light quark.3 The jettiness arises from

the low mass, and hence large momenta, of the light quarks in the contin-

uum background. Furthermore, these continuum background events are qq

with final state radiation, hence the presence of high energy photons in all

continuum background events.

3“jetty” events are those in which the decay consistsof two or more jets shooting from

a central region – i.e. the momentum distribution is very centralized about two opposite

regions.
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Note that the qq simulation is simulated by the the subroutine “lqq.ctr”

with a center-of-mass energy of 10.56 GeV. The signal bb signal B production

and decay is simulated by the script “bsg.ctr” and further refinements, simu-

lating parity violation in the B meson decay, is simulated through “bsg.dec,”

at center-of-mass energy 10.58 GeV. Finally, the simulation of a “back-

ground” at the signal’s center-of-mass energy of 10.58 GeV is performed

through the script “bb 4s3.ctr,” and qq decays are programmed through the

script “lqq.ctr.”

A cartoon depicting jetty events, corresponding to qq backgrounds, and

isotropic BB signal and backgrounds, are shown in figures 24 - 26.

Event shape variable cuts, such as the Fox-Wolfram moments thrust,

sphericity, and other combinations, are relatively good at suppressing “jetty”

qq backgrounds from the BB signals and backgrounds. By far the most

important part is background suppression, as continuum backgrounds over-

whelm the signal B → γKππ decay by 105. Furthermore, σqq = 3.1 nb, while

σBB = σΥ4s
= 1.07 nb (see figure 20 for a relative ratio in cross-sections to

BB and qq decays).

Here we discuss signal selection cuts primarily, and then those event shape

variable cuts used in the suppression of backgrounds. The signal selection

52



Figure 24: (left) Cartoon of event tracks for a BB signal or background
event shown here. Note that this event is isotropic. Event shape variable
cuts, therefore, should be able to remove a large bulk of qq events.

Figure 25: (middle) Cartoon of event tracks for a two-jet qq event with a
hard photon within here; the recoil consists of all particles except for the
photon. Since the momentum and energy of the hard photon dominates the
event, there is a significant chance that a jetty event, such as from continuum
background, will not be recognized as such.

Figure 26: (right) Cartoon of event tracks for a two-jet event in the photon
recoil frame, or proper frame of all particles recoiling from the hard photon.
The correct jettiness, with negligible bias from the hard photon, is shown here
(i.e. an observable which recorded the event shown in figure 25 as non-jetty
would do so here.

cuts consists of proper particle identification, combinatoric reconstruction of

the cut according to invariant mass and total momentum of the combination.
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8.2 Particle Identification Cuts

The current reconstruction chain consists of generic particle identification

cuts to choose “good” particles for the decay B0, B0 → γK±π∓π0. Below we

list the “cuts” which the various candidate tracks and showers must pass to

be considered “good” photons, K±’s, π±’s, π0’s, and K0
S’s.

8.2.1 Shower Cuts

Showers deposit their energy into the crystal calorimeter and leave no energy

trail (i.e. hits) in the drift chamber (see figure 19). The following loose cuts

made on the showers, which correspond to relatively low-energy photons. For

normal low-energy γ showers, create a bank of stored photon information

from the showers. These standard photonic cuts are given below:

1. verify that the shower does not match to charged track, since charged

particles also leave showers within the crystal.

2. that the shower lies in the portion of the detector that can reliably

measure shower energies well, hence where | cos θ| < 0.95 (see figure 19

for a schematic).

3. the energy of the shower must be greater than 25 MeV, i.e. the energy
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above which the efficiency and energy resolution for showers is well

understood.

For high energy γ, the following tight cuts are made:

1. Photon energy is greater than 1.8 GeV.

2. Photon is more than 30 cm from the nearest charged track.

3. π0 veto: the high-energy photon cannot correspond to any of the γ used

to reconstruct a π0.

4. lateral energy profile: we must make sure that the lateral energy profile

of the shower is consistent with its being a photon to a level of 99%

confidence. The measure of the lateral energy profile is the quantity

E9E25, the ratio of the energy deposited within a 3× 3 square crystal

to the energy deposited within a 5 × 5 area; the value CUT1 gives a

ratio to which one can be certain, to 99% statistical accuracy, that only

one high-energy shower has reached this region of the calorimeter.

Shown below, in figures 30 and 31 are relative energy profiles seen for “good”

and “bad” showers over a 5 × 5 square of crystal calorimeters.
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Figure 27: (left) Energies of candidate photons (i.e. showers) used in π0

reconstruction. We use showers whose energies are greater than 25 MeV.

Figure 28: (middle) Energies of high-energy photons whose energy is greater
than 1.8 GeV. These are photons used in the reconstruction of the B meson
decay.

Figure 29: (right) Statistical measure of the lateral energy profile of neu-
tral showers, E9E25/CUT1, where E9E25 is the ratio of the shower energy
deposited within the central three-square crystal to the energy deposited
within the rest of a five-square crystal. CUT1 is a value for E9E25, for a
given shower energy, that is statistically significant at the 0.99 level. Ac-
ceptable high energy photons are those in which the lateral energy shower
profile quantity is greater than 1. Since TRKSIM simulates the detector, this
quantity is always greater than 1.0.
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Figure 30: (left) Relative energy profile for a good shower, in which nearly
all the energy is deposited within a central 3 × 3 square array detectors.

Figure 31: (right) Relative energy profile for a bad shower, in which we have
two shower hits centered at detectors (-2,0) and (2,0). As shown, there is no
symmetric energy profile for this two-shower hit.
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8.2.2 Track Cuts

For the given decay in consideration, the following cuts are associated with

charged tracks.

1. Each charged track has an associated shower.

2. The charged tracks must lie within the region of the detector in which

the momentum and energy resolution of these charged tracks is reason-

ably high, hence where |cos θ| < 0.8, where θ is the angle between the

long axis of the beam pipe and the three-momentum of the charged

track.

3. The average deviation of detector “hits,” as seen by anode wires within

the drift chamber, about the “best-fit” path, or RESICD, must be less

than 0.5 mm.

4. Associated with each charged track are quantities SGKADI and SGPIDI,

associated with how “well” this track corresponds to a charged kaon

or pion, respectively. The only manner in which to distinguish charged

kaons and pions is through their ionization profile, dE/dx, measured

in the drift chamber by anode wires; to a limiting energy, both charged

pions and kaons deposit energy in the drift chamber in a characteristic
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manner, as illustrated in figure 35. SGKADI and SGPIDI represent

the standard deviation of the average energy deposited per sample to

the expected energy deposited per sample by kaons and pions, respec-

tively. See figures 32 and 33 for the distributions of SGKADI and

SGPIDI.

5. In reconstructing B0, B0 → γK±π∓π0 decays, a charged track will be

considered a pion if |SGPIDI| < 3 and will be considered a charged

kaon if |SGKADI| < 3.

6. Furthermore, if a particle has been chosen to be a “good” combination,

then the mass of the charged track is changed to 0.49767 GeV, the mass

of the K±, and its energy is scaled accordingly.
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Figure 32: (left) SGKADI, a measure of, for a given charged kaon momen-
tum, how many standard deviations away is the ionization within the drift
chamber away from the predicted ionization a K± deposits within the drift
chamber. “Good” K± are those where |SGKADI| < 3. The tail at high
values of SGKADI correspond to π±.

Figure 33: (middle) SGPIDI, a measure of, for a given charged pion momen-
tum, how many standard deviations away is the ionization from the predicted
amount of ionization a π± deposits within the drift chamber. “Good” π± are
those where |SGPIDI| < 3. The tail at low values of SGPIDI correspond
to K±.

Figure 34: (right) charged particles follow curved paths within a magnetic
field. Hits within the drift chamber are centered about the path of the
particle, typically ten to twenty hits per particle. The average deviation of
these hits from the “best-fit” estimate of the path of the charged track is
RESICD. This figure depicts RESICD for all tracks. Good tracks are
those in which RESICD < 0.005 m. Note that since we are employing
TRKSIM to simulate the behavior of the detector, that RESICD is always
at a given value.
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Figure 35: Plot of dE/dx as a function of particle rigidity; the lowest branch
corresponds to π±, the next highest correspond to K±, and the highest
branch to protons. The faint convex branch corresponds to e±. Note that
beyond a rigidity of 0.8, it becomes impossible to distinguish, based on ion-
ization characteristic, charged pions and kaons.
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8.2.3 π0 Cuts

In constructing a π0 bank, we employ the following sets of cuts; associated

with these cuts are thorough explanations of what is being done.

1. Each photon from a π0 decay must lie within the portion of the detector

that accurately measure lower energy photons, hence where |cos θ| <

0.8.

2. A statistical measure of the difference in invariant mass of the two-

photon system, given by the following:

Sγγ =
mγγ − mπ0

σγγ

(39)

where mγγ is the mass of the 2-photon system, mπ0 = 0.135 GeV is the

mass of the π0, and σγγ is the expected uncertainty in the two-photon

mass. The value of this quantity must be less than 3.0, i.e. |Sγγ| < 3.0.

3. None of the photons which constitute this can correspond to the high-

energy photon; neither photon must correspond to each other.

Plots of those π0 from all events in a simulation are shown in figures 36 and

37 and plots from events in which at least one B combination passed the cuts
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are shown in figures 38 and 39).
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Figure 36: (left) Distribution of Sγγ. We consider a pion to be “good” only
when the mass is within 3 standard deviations of the true π0 mass, 0.135
GeV. Note, here, the large combinatoric background beneath the peak.

Figure 37: (right) Distribution of the invariant mass of the two-photon sys-
tem about the true π0 mass of 0.135 GeV. Note the large flat combinatoric
background corresponding to misreconstructed π0, above which the peak sits.

Figure 38: (left) Plot of the reconstructed π0 mass for those “true” B decay
events. Note the lack of a combinatoric background.

Figure 39: (right) Plot of the parameter σγγ for those “true” decay modes.
Note the lack of a combinatoric background.
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8.2.4 K0
S Cuts

In constructing a K0
S bank, we employ the following sets of cuts; associated

with these cuts are thorough explanations of what is being done. Here we

make the following cuts on being a good K0
S:

1. The charged pions which make up these K0
S are themselves good charged

tracks, thus that |cos θ| < 0.8.

2. The associated χ2 value for the fit of two charged tracks to form a K0
S

must be less than 3. This χ2 value is formed by determining the devi-

ation of charged tracks about their path, as well as (and for TRKSIM,

primarily by this method) how well these two charged tracks “fit” to

form a K0
S.

3. The distance that the reconstructed momentum of the K0
S “misses” the

center of the beam, or RBMTX, must be less than 0.5 mm.

4. The reconstructed mass of the K0
S must be less than 0.015 GeV from

the true mass of the K0
S, 0.49767 GeV.

Plots detailing the above variables are shown in figures 40, 41, and 42.
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Figure 40: (left) Distribution of χ2 for K0
S candidates. We choose only those

K0
S whose χ2 ≤ 3.

Figure 41: (right) Distribution of deviation of reconstructed K0
S mass from

true mass of 0.498 GeV. We require that for a candidate,
∣

∣

∣∆mK0

S

∣

∣

∣ ≤
0.015GeV .

Figure 42: (left) The distance that the reconstructed K0
S spatial momentum

“misses” the central axis of the detector. TRKSIM does not, here, include
the background, for which the deviation is more severe.

π+

π−

K
0

S

beam axis center

Figure 43: (right) A schematic cartoon explaining, in rough terms, the basic
elements of a K0

S reconstruction. Two charged pions are reconstructed and
their best-fit paths are determined; if these tracks meet, then they are fitted
into a best-estimate reconstructed K0

S – note that dots along the paths denote
“hits” within the drift chamber. Also from these is the quantity RBMTX,
the minimum approach distance of the reconstructed K0

S momentum to the
beam axis.
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8.3 Combinatoric Cuts

The overall decay in question is B → γKππ. This occurrs via six pos-

sible decay modes: 1) B0, B0 → γK±π∓π0, 2) B0, B0 → γK0
Sπ+π−, 3)

B0, B0 → γK0
Sπ0π0, 4) B± → γK±π∓π±, 5) B± → K±π0π0, and 6) B± →

γK0
Sπ±π0. We implement a “combinatoric machine” that searches through

all six modes in the following manner. However, although during the pre-

liminary reconstruction, we analyzed only the three neutral B decay modes,

during the progress of this project, we have analyzed the highest-efficiency

mode – B0, B0 → γK±π∓π0.

1. B0, B0 → γK±π∓π0: first loop through the high-energy photons. Sec-

ond, loop through the charged tracks to look for K± candidates. Third,

loop through charged tracks to look for π± candidates of opposite sign

of the kaon; make sure that the pion is not the same track as the kaon.

Finally, loop through the π0 candidates, making sure that none of the

π0 photons correspond to the high-energy photon. Change the mass of

the kaon candidate to the charged kaon mass, and change its energy to

correspond to that of a charged kaon.

2. B0, B0 → γK0
Sπ+π−: first loop through the high-energy photons. Sec-
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ond, loop through the K0
S candidates. Third, loop through the charged

tracks looking for a π+, such that the charged track does not corre-

spond to the K0
S descendants. Fourth, loop through the charged tracks

looking for a π−, such that the charged track does not correspond to

the K0
S charged pions.

3. B0, B0 → γK0
Sπ0π0: first, loop through the high-energy photons. Sec-

ond, loop through the K0
S candidates. Third, loop through the π0

candidates, making sure none of its descendants correspond to the high-

energy photon. Fourth, loop through the π0 candidates, making sure

that none of its descendants correspond to either the high-energy pho-

ton or to the descendants of the other π0.

4. B± → γK±π∓π±: First, loop through the high-energy photons. Sec-

ond, loop through the charged tracks looking for K± candidates. Third,

loop through charged tracks looking for π± candidates of the opposite

sign of the kaon, making sure that the pion does not correspond to the

kaon. Fourth, loop through the charged tracks looking for π± candi-

dates of the same sign of the kaon, making sure that the pion does not

correspond to the kaon. Change the mass of the kaon candidate to the

67



charged kaon mass, and change its energy to correspond to that of a

charged kaon.

5. B± → γK±π0π0: First, loop through the high-energy photons. Second,

loop through the charged tracks looking for a K± candidate. Third,

loop through the π0 candidates, making sure that none of its descen-

dants correspond to the high-energy photon. Fourth, loop through

the π0 candidats, making sure that none of its descendants correspond

either to the high-energy photon or the descendants of the other π0.

Change the mass of the kaon candidate to the charged kaon mass, and

change its energy to correspond to that of a charged kaon.

6. B± → γK0
Sπ±π0: First, loop through the high-energy photons. Second,

loop through the charged tracks looking for a K0
S candidate. Third,

loop through the charged track candidates looking for a π±, checking

that it does not correspond to the descendants of the K0
S. Fourth, loop

through the π0 candidates, making sure that none of its descendants

correspond to the high-energy photon.

In this analysis, we focus on only B0, B0 → γK±π∓π0 decays. Furthermore,

we choose only that combination which results in the best B meson. This is
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the γKππ combination closest in mass to mB = 5.28 GeV. Although we may

be artificially biasing the distribution for background (BB and qq events)

with this choice, however their frequencies are small enough that we may

ignore their effects (after making the appropriate cuts). Plots of the cosine

helicity angle distribution for the decay B0, B0 → γK±π∓π0, are shown in

figures 44 and 45.

Figure 44: (left) Here is the cosine of the K1 helicity angle for the case where
we have included all candidate B mesons which pass the cut. Note that there
is no picture of the normal helicity angle distribution.

Figure 45: (middle) Distribution of the cosine of the K1 helicity angle for
that case in which we have chosen the “best” combination B meson. As
expected, no parity violation.

Figure 46: (right) Number distribution of candidates (i.e. all combinations
which have passed the cuts.
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8.4 Selection of Signal and Sideband Regions

The only criteria associated with choosing an appropriate combination are

the total kinematic variables: ∆E, the difference between the sum of the en-

ergies of the candidate particles and half the beam energy Ebeam = Ecm/2 =

5.29 GeV; and the beam energy constrained mass, Mbeam =
√

E2
beam − |p|2,

where p is the total 3-momentum of the system of γKππ. We use these

variables because E = Ebeam = 5.29 GeV and MγKππ = MB = 5.29 GeV

are strongly correlated, since both depend on the energy of the γKππ sys-

tem. However, ∆E and Mbeam are largely uncorrelated, and the resolution

in Mbeam is approximately 3 MeV, whereas the resolution in MγKππ is of

the order of 50 MeV; the independence of these two variables allows us to

subtract out more of the background without sacrificing signal.

It was determined that a large majority of misreconstructions are due

mainly to employing the “wrong” candidate π0, and a secondary amount

due to switching around the charged kaon and the charged pion – this is

due to the fact that the only determination of identity for the charged pion

and kaon is dE/dx – at energies above 500 MeV, it is no longer possible to

distinguish the two candidates apart (see figure 35). The misreconstructions

due to using the “wrong” π0 is due to the fact that there a relatively large
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number of low-energy (E < 100 MeV) photons (see figure 27).

A diagram of various regions of the two-dimensional plot of Mbeam ver-

sus ∆E is shown in figure 47; a density plot in these two dimensions, i.e.

figure 48, depicts the signal decay peak. Furthermore, we make plots of the

Figure 47: (left) Different plotting areas of Mbeam vs. ∆E plot. Plots of
Mbeam are made in “signal” and “background” regions (see figure 52). “Re-
gion I” corresponds to a plot of Mbeam (see figure 49), and likewise “Region
II” (see figure 50). Finally, “Region III” corresponds to plot of ∆E (see
figure 51).

Figure 48: (right) ∆E vs. Mbeam for decay chain B0, B0 → γK±π∓π0. Note
the peak at the B mass; that is, the region in which Mbeam (on vertical axis)
is centered about 5.28 GeV and ∆E (on horizontal axis) is centered about 0
GeV.

various regions within the “grand sideband,” namely in regions I, II, and III

shown in figure 47. These plots are shown in figures 49 - 51. Here, we note

that the peak is superimposed above a misreconstruction background. This
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misreconstruction background is depicted in figure 50; although technically

not due to the continuum background, we find that an ARGUS fit function

represents this misreconstruction background well. The ARGUS fit function

is the following:

N(x) = P1x

√

1 −
(

x

MB

)2

exp

{

P4

[

1 −
(

x

MB

)2
]}

(40)

In order to determine a “good” γKππ combination, we require that ∆E,

the difference in the beam energy of the CLEO detector (5.290 GeV) and

the sum of the energies of the daughter particles, be between -0.2 GeV and

0.2 GeV (see figure 53). We also require the beam energy constrained mass

Mbeam lie between 5.27 GeV and 5.29 GeV (see figure 52).

In addition, we store combinations within the sideband region, or those

γKππ combinations for which -0.2 GeV < ∆E < 0.2 GeV and 5.20GeV <

Mbeam < 5.25GeV (see figures 52 and 48). In this Monte Carlo simulation of

the signal B decay, the sidebands correspond to misreconstructions (i.e. one

or more bad kaons or pions) of the candidate.

We use the ARGUS fit function on the signal and sideband regions to

determine the ratio of misreconstructed background in the signal region to
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the sideband region. Sideband-subtracted plots of the cosine helicity angle

are constructed by subtracting the sideband cosine helicity angle distribution,

with the proper correcting factor, from the signal region cosine helicity angles

(see figure 54).
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Figure 49: (left) Plot of Mbeam where -0.6 GeV < ∆E < -0.4 GeV, which
corresponds to Region I in figure 47. Note the paucity of points.

Figure 50: (middle) Plot of Mbeam where 0.4 GeV < ∆E < 0.6 GeV. Mbeam

is centered about 5.25GeV . Note that this corresponds to the shape of the
background function shown in figure 52. This region corresponds to Region
II shown in figure 47.

Figure 51: (right) Plot of ∆E where 5.20 GeV < Mbeam < 5.25 GeV. This
corresponds to Region III in figure 47. Note the marked asymmetry in this
distribution of ∆E.

Figure 52: (left) Regions of interest in the histogram plot of constrained
Mbeam for combinations in which −0.2 GeV < ∆E < 0.2 GeV. The signal
data comes from the peak (5.27 GeV < Mbeam < 5.29 GeV); the sideband
which is to be subtracted is collected from region where 5.20 GeV < Mbeam <
5.25 GeV. In addition, the ARGUS background function is superimposed on
the distribution to give a clearer representation of the relative weights of the
background in the signal and background regions.

Figure 53: (middle) Raw plot of ∆E. Note the presence of a large background
outside the “cut” region, as well as the noticeable peak in the region of
interest.

Figure 54: (right) Plot of raw K1 cosine helicity angle distribution (in solid)
in signal, superimposed with properly scaled K1 background helicity angle
distribution from sideband. Taken from maximum parity violation case.
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8.5 Event Shape Variable Cuts

Quantities which are effective at suppressing “jetty” events are the second

Fox-Wolfram moments, the sphericity, and thrust (as described below). All

three quantities, and other event-shape variables; these extra variables in-

clude the cosine of the angle between the “hard” (high-energy) photon and

the thrust of the recoil, cosine of the angles between the thrusts of the two B

mesons, and the cosine of the thrust of the other B (i.e. not signal B0) and

the hard photon. Here, we find that the cosine of the thrust between the two

B mesons is isotropic for signal events, while being definitely nn-isotropic for

background qq and BB events.

The Fox-Wolfram moments are given by the following equations [11]:

Hk =
∑

ij

|pi| |pj|Pk (cos θij) (41)

Rk =
Hk

Ecm

(42)

Where Evis is the visible energy of the event, |pi| is the magnitude of the

spatial momentum of particle i, and θij is the angle between hadrons i and

j. Pk is the kth order normalized Legendre polynomial. R0 is a measure

of energy conservation, so if we ideally measure all the energy (10.56 GeV)
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within an event, then R0 = 1. Furthermore, R1 is a measure of momentum

conservation. Ideally, we would have that R1 = 0 in the two systems in

which we measure this quantity: the γKππ system in the lab frame, and the

photon recoil system Kππ in its own rest frame. Finally, for jetty events

we have that R2 = R0 for perfectly jetty events, while for spherical events

R2 = 0. In both cases, we expect spherical events, so that R2 → 0.

The sphericity S of an event is given by the following:

S =
3

2
min

(∑

a pa
norm · panorm

∑

a pa · pa

)

(43)

S =
3

2
(λ2 + λ3) (44)

Where pa
norm is the 3-momentum vector of particle a which is transverse

to some axis that minimizes S, and λ2 and λ3 are the second and third

eigenvalues, respectively, of the momentum tensor formed by an aggregation

of particles. For jetty events S → 0 while for isotropic events S → 1.

The thrust T of an event is found in the following way:

T = max

(∑

a pa · eT
∑

a pa

)

(45)
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where eT is the thrust axis of the event. Jetty events have thrusts approaching

1, while isotropic events have thrust approaching zero; thrusts are always

negative. Finally, we have also made plots of the cosine of the photon with

the thrust axis, cos θthrust, for the Kππ system in the photon recoil frame

(i.e. Kππ rest frame) and the lab frame. As shown in figures 25 and 26,

an obviously jetty event will not be noticed automatically as an especially

“jetty” event in the lab frame, but will be notice in the photon recoil frame.

Furthermore, we define additional event shape variables, such as the the

cosine of the angle between the thrusts axes of both B mesons (i.e. the

candidate B and the other B), as well as the cosine of the thrust axes be-

tween the “hard” photon and either the candidate B or the other B. These

procedures are useful in eliminating qq continuum backgrounds as well as

BB resonance backgrounds – as shown, these events are much “jettier” than

signal B0, B0 → γK±π∓π0 decays.

Here I analyze the measures of event shape variables R2, S, T , and cos θTT ,

the cosine of the angle between the two thrust axes of the two B mesons.

Second, the 4-momentum of the photon recoil is defined as pbeam−pγ, where:

pbeam = (0, 0, 0, Ebeam) (46)
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Thus, we can take into account that energy may be lost in the form of

neutrinos or other particles which are not recorded by the detector. Event

shape variables are chosen to most efficiently suppress the background, and

so increase the signal to background ratio.

Below, shown in figures 55 and 56 are plots of the angle between the thrust

axis of the γKππ system and the thrust axis of the other particles in this

system, or the cosine of the thrust axes between the two B mesons – cos θTT .

Plots are taken in both the lab frame and the rest frame of the recoiling

B. Note the increased “jettiness” of background events, about which we can

very efficiently suppress backgrounds.

To combat overwhelming levels of continuum background, we make the

following cuts on the event shape variables are the following. These cuts,

although removing 2/3 of the signal decay, remove relatively much more of

the background.

1. R2, the second Fox-Wolfram moment, for the event in the lab frame

must be less than or equal to 0.5.

2. T , the thrust of the event in the photon recoil frame, must be smaller

than 0.7.
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3. cos θ, where θ is the angle between the thrust axis of the γKππ system

and the rest of the particles in the lab frame, must be between -0.4 and

0.4.

Figure 55: (left) Plot of the cosine of the angle between the γKππ thrust
axis and the thrust axis of the rest of the particles, in the lab frame. Note the
parabolic distribution of cos θTT . The continuum is dented by a line-dotted
histogram, while the signal distribution is denoted by a solid histogram. A
cut here is made, |cos θTT | < 0.40, where θTT is the angle between the two
reconstructed B mesons

Figure 56: (right) Plot of the cosine of the angle between the γKππ thrust
axis (candidate B) and the thrust axis of the rest of the particles (i.e. other
B), in the rest frame of the other B..

79



Figure 57: (left) Normalized plots (to area = 5000) of the comparison be-
tween the signal simulation, highest mode (for 10000 events) and the “scaled”
background simulation (for 100,000 events, scaled as described below). Here,
the cut shown is that we allow only those events in which R2 ≤ 0.5. These
are quantities taken in the lab frame.

Figure 58: (middle) Normalized comparative plots (to area = 5000) of the
signal simulation simulation and the scaled background simulation. These
are taken in the lab frame.

Figure 59: (right) Normalized comparative plots (to area = 5000) of the signal
MC simulation and “scaled” background simulation of the thrust magnitude.
These are taken in the lab reference frame.

Figure 60: (left) Normalized plots (to area = 5000) of the comparison be-
tween the signal simulation, highest mode (for 10000 events) and the “scaled”
background simulation (for 100,000 events, scaled as described below). These
data were taken in the photon recoil frame.

Figure 61: (middle) Normalized comparative plots (to area = 5000) of the
signal simulation simulation and the scaled background simulation. These
are taken in the photon recoil frame.

Figure 62: (right) Normalized comparative plots (to area = 5000) of the signal
MC simulation and “scaled” background simulation of the thrust magnitude.
These are taken in the photon recoil frame.
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9 Characterization of Reconstructions

9.1 Efficiency

Consider the efficiency distribution of the signal decay with cuts. Below we

have plotted the following quantities: 1) the reconstructed cosine helicity

angle, suitably background-subtracted, 2) the generator-level cosine helicity

angle for all events which pass the cuts, and 3) the generator-level cosine

helicity angle for all 10,000 events. We plot for maximal parity violation

(T1 = T2, c.f. equation 20) and minimal parity violation (T1 = 0).

Furthermore, efficiency plots for parity conservation and parity violation

are fit to the cosine helicity angle function (see equation 31). Fitted error

plots are shown below, in figures 67 and 68. Note that, in figure 67, the

efficiency distribution is symmetric about cos θ = 0 – there is no parity

violation in the selection criteria. For the case of maximal parity violation,

the efficiency distribution is asymmetric.
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Figure 63: (left) Plot of the sideband-subtracted cosine helicity angle, for
10,000 events. Here, the expectation value is 〈cos θ〉 = −0.1383 ± 0.0334.

Figure 64: (right) Plot of the reconstructed cosine helicity angle, without
sideband subtraction, for 10,000 events. Here 〈cos θ〉 = −0.0835 ± 0.0154.
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Figure 65: (left) Plot of the generator-level cosine helicity angle distribution
for all events which pass the cuts. Here, the expectation value is 〈cos θ〉 =
−0.1962± 0.0151. The expectation value shown here is statistically different
from that of the reconstructed expectation value.

Figure 66: (right) Plot of the generator-level cosine helicity angle for all
events. Here, the expectation value is 〈cos θ〉 = −0.1865 ± 0.0092.
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Figure 67: (left) Efficiency distribution, as a function of cosine helicity angle,
for the case of parity conservation. Here, as shown in the fit, we get a
symmetric distribution.

Figure 68: (right) Efficiency distribution, as a function of cosine helicity an-
gle, for the case of maximal parity violation. We have a large linear term, due
largely to the fact that the expectation values of generator and reconstruction
cosine helicity angles are different (see figures 76 and 79 for comparison).
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9.2 Resolution

A further measure of the efficacy of reconstruction is to determine whether

there is any systematic bias between the generator level measured observ-

able and that observable determined from the reconstruction. To control

bin migration, we construct a symmetric bin distribution, where −1.0 <

cos θgen − cos θrec < 1.0; this is done with an odd number of bins, say 101.

We fit this distribution to the following gaussian:

n(x) =
N0√
2πσ

e−(x−µ)2/2σ2

(47)

we find that the mean and standard deviation are given by the following:

µ̂ = −2.31 ± 2.33 × 10−4 (48)

σ̂ = 1.12 × 10−2 ± 1.69 × 10−4 (49)

The mean is not statistically different from zero; thus, we may conclude that

there is neither systematic bias between the generator level cosine helicity

angle and the reconstructed cosine helicity angle.
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Figure 69: (left) Plot of the symmetric distribution of cos θgen − cos θrec for
the signal decay. Here, out of 3920 events, 1708 lie within the first bin
(|∆ cos θ| < 9.9 × 10−3). We fit the distribution to a Gaussian using χ2

minimization, and excluding all points such that |cos θgen − cos θrec| ≥ 0.2.

Figure 70: (right) Resolution as a function of the actual particle ID-level co-
sine helicity angle; on the horizontal axis lies the actual cosine helicity angle,
cos θgen, while on the vertical axis lies the difference with the background-
subtracted cosine helicity angle, cos θgen − cos θrec.

In any case, even assuming the most optimistic results in the above,

with maximal parity violation and large (> 1000) samples, any expected

systematic bias will be only one standard deviation in difference in the parity-

violating effect. In other words, although there may be a statistical bias, this

bias (≈ 10−2) should not significantly affect the data.
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10 Background Subtraction

10.1 No Event Shape Variable Cuts With Continuum

Background Rescaling

The number of events for the “background” and “signal are given by the

following simple functional forms:

Nbkgnd =
Nbkgnd

Ntot

× L× σqq (50)

Nsignal = L × σBB × 2 × 1

2
× B(B → γKππ) × ǫ(B → γKππ)

=
Nsignal,BB

Ntot

× L× σBB

(51)

Here, the cross-section for BB production is σBB = 1.07 nb, and for the

qq continuum background it is σqq = 3.1 nb. Furthermore, in equation 51

we multiply by 2 because of B pair production, and divide by 2 in order to

discount the charged modes of the B. Furthermore, in the context of this

paper we consider only the B decay mode B,B → γK±π∓π0. Each of the 6

possible decay modes has a branching fraction of ≈ 10−5 and an efficiency,

with the above cuts, of ≈ 13%.
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For the background, we note that the signal region (see figure 47) corre-

sponds to the following, for the reconstructed modes: −0.2 GeV < ∆E < 0.2

GeV and 5.27 GeV < Mbeam < 5.29 GeV, and passing other kinematic and

combinatoric cuts on the decay. Using off-resonance on the Monte Carlo

background we have that the center-of-mass energy is 10.56 GeV; thus, the

energy of the reconstructed B meson is 5.2625 GeV (see figures 71). A rel-

atively simple way to compensate for this lower, off-resonance energy (Υ4S

resonance is located at 10.58 GeV) is to scale the momenta of the particles

by 5.29/5.2625, and also to change the beam energy to this corresponding

amount. We keep all the cuts and keep the calculated invariant masses the

same, but to change the momenta and the energies of the “scaled” particles.

E ′
beam =

5.29

5.2625
Ebeam (52)

p′ =
5.29

5.2625
p (53)

E ′ =
√

m2
0 + p′2 (54)

First, however, we need only compare to the following case – the back-

ground decay in which the center-of-mass energy is 10.58 GeV, to the case

where the continuum background has a center-of-mass energy of 10.53 GeV.
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An event is considered to be in the signal if the combination passes the kine-

matic cuts. As in the case of signal decays, we consider only the “best”

combination of four particles – that combination which is closest to the B

mass. From the above, we see the following in terms of L, the luminos-

ity of the CESR collider. Here, b1 refers to a Monte Carlo simulation of

the qq background generated at resonance Ecm = 10.58 GeV; b2 refers to

the Monte Carlo simulation of the qq continuum background generated off

resonance at Ecm = 10.56 GeV. The combinatoric cut is that the decay

B0, B0 → γK±π∓π0 occurs (or is seen). These numbers are taken for a

100,000 event run.

As a confirmation that the “scaled” off-resonance continuum background

is somewhat correct is the fact that the maximum beam constrained mass is

10.58/2 = 5.29 GeV, for both the “scaled” continuum background and the

hypothetical continuum background at 10.28 GeV.

Nsignal,b2 = 151 ±
√

151 = 151 ± 12.2 (55)

Nsignal,b1 = 114 ±
√

215 = 114 ± 10.7 (56)

The discrepancy will be treated as a contribution to our systematic error;
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thus, we may use the following as the determination of the number of events

due to the background, as the “renormalized” background with center-of-

mass energy 10.58 GeV (i.e. b1). Now, with this calculate (in terms of L)

the number of signal events of this particular decay that we should see, using

equations 50 and 51:

Nbkgnd =
Nsignal

Ntot

= 4.681 × 10−3L − nb (57)

Nsignal = 3.857 × 10−6L − nb (58)

Therefore the noise-to-signal ratio here is 1214 to 1! Therefore, we need

extremely sharp cuts to suppress the continuum backgrounds.
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Figure 71: Plots of kinematic variables Mbeam and ∆E for the “scaled” off-
resonance continuum background decay, where Ecm = 10.56 GeV; note that
although we choose the “best” combination as those particles which come
closest to the invariant B mass, there does not appear to be a pronounced
peak (i.e. negligible mass bias) at the B mass. In any case, this bias in the
continuum background will not affect the observation of the signal, as the
simulated background contains no signal B decay.
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Figure 72: Plots of kinematic variables Mbeam and ∆E for the “unscaled”
resonance continuum background decay, where Ecm = 10.58 GeV; note that
although we choose the “best” combination as those particles which come
closest to the invariant B mass, there does not appear to be a pronounced
peak at the B mass. In any case, this bias in the continuum background will
not affect the observation of the signal, as the simulated background contains
no signal B decay. Furthermore, these kinematic plots are identical to the
scaled continuum background set at Ecm = 10.53 GeV.
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10.2 Scattering Angles

A further cut we may make is the angle our reconstructed candidate B makes

with the beam axis. Continuum background events are events of the form

e+e− → qq, or events where the initial and final states are two fermions. How-

ever, signal events are of the form e+e− → Υ4s → BB, or events in which

the initial state is two fermions and the final state is two bosons. A conve-

nient measure of differential cross section is an axis along the momenta of

the electrons; the differential cross section for continuum background events

(per unit solid angle) is independent of angle, wherease the differential cross

section for BB events is proportional to sin2 θ. See figures 74 and 75 for

these relations. Here, due to the efficiency of cuts made on the event shape

e+ e−

B

B

BB background (and signal)

e+ e−

q

q
qq continuum background

Figure 73: The two main types of collisions that may occur near the Υ4s

resonance about 10.58 GeV. As shown, these two events are continuum back-
ground events and BB. We take the z-axis to be along the beam, coincident
with the momentum axis of the electron and positron.
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Figure 74: (left) Plot of the angle made by the reconstructed candidate B
meson, for a Monte Carlo simulating signal events. Here, the differential
cross section dσ

dΩ
∝ sin2 θz.

Figure 75: (right) Plot of the angle made by the reconstructed candidate
B meson, for a Monte Carlo simulating qq continuum events. Here, the
differential cross section dσ

dΩ
is isotropic.

variables (see figures 61 and 56), we need not make a relatively inefficient

cut on this scattering angle.

10.3 Final Background Subtraction Results

When we ran 106 events in off-resonance continuum background decays, we

saw Nqq = 882 ± 29.7; the simulation of signal events we expect to see

was encoded by “bb 4s3.ctr,” which encodes for the Υ4s triplet state, where
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Υ → BB. From this, we see the following:

Nbkgnd = 16 ± 4.0 (59)

Nsignal = 25 ± 5.0 (60)

Therefore, using equations 50 and 51, we get the following measures of the

number of events we should see, as well as a signal to noise ratio:

Nbkgnd =
Nsignal

Ntot

× L× σqq = 4.96 × 10−5 ± 1.24 × 10−5L − nb (61)

Nsignal =
Nsignal,BB

Ntot

× L× σBB = 2.68 ± 0.54 × 10−5L − nb (62)

Thus we have a signal-to-background (or “noise”) ratio of 1.9 ± 0.6 to 1.

Although the background is higher than the background, however we may

still determine the level of signal, with the above cuts, since the signal level

is not smaller than the level of statistical fluctuations in background.

The luminosity of the CESR collider, under operation of the CLEO III

detector is at a maximum of ≈ 6 × 1033cm−2s−1 = 6nb−1s−1. Therefore, at

the highest level of operation, we should get these absolute levels with the
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cuts given above:

Nbkgnd = 2.98 ± 0.74 × 10−4 s−1 (63)

Nsignal = 1.61 ± 0.32 × 10−4 s−1 (64)
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11 Final Thesis Results

Here, we have the following trends with respect to the parity-violating pa-

rameters shown here. In fact, below we have the trends with respect to the

following variables: 1) the sideband-subtracted reconstructed cosine helicity

angle distribution, 2) the cosine helicity angle distribution for generator-

level data for all events which pass the signal cuts, and 3) the generator-level

data. The following are shown below, in figures 76, 77, and 78. However,

note that there is a great deal of variation for the parity-violating trend for

the background-subtracted reconstruction; a plot of the cosine helicity an-

gle without background subtraction yields the following, where we have not

rescaled the errors in the observable to 10,000 events – rather, we have used

the error for the the given sample size, i.e. the sample size of events in the

signal region. Furthermore, we note that give a reconstruction of magnitude

scaled to 1, of which α < 1 consists of a parity-conserving “reconstruction”

background with a flat cos θ distribution, that the total distribution can be

represented as the following, where x = cos θ (see equation 31 for an analo-
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Figure 76: (left) Plot of the trend in the parity violating observable, as a
function of the parity-violating parameter q = 2T1T2/(T

2
1 + T 2

2 . Here, we see
that the parity-violating observable y has the following trend: y = αq + β,
where α = 0.2040 ± 0.007, β = −0.0087 ± 0.0039.

Figure 77: (middle) Plot of the trend in the parity-violating observable,
as a function of the parity-violating parameter, for generator-level data in
which the events pass all the cuts. Here, we see that in the fit y = αq + β,
α = 0.2088 ± 0.0068, β = −0.0079 ± 0.0039.

Figure 78: (right) Here is a plot of the parity-violating trend for sideband-
subtracted reconstructed events. Here, we have the following α = 0.1301 ±
0.0073, β = 0.0086 ± 0.0040. In addition, the variation using sideband sub-
traction is extreme.

gous equation):

ntot(x) =
a

2a + 2/3c
+ bx +

c

2a + 2/3c
x2 (65)

The expectation value for this distribution is then 〈x〉ntot
= b. However, if

we subtract out this level of background, such that we have a distribution
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approaching that of the cosine helicity angle distribution, then:

n′(x) =
a

2a + 2/3c
+ bx +

c

2a + 2/3c
x2 − α

2
(66)

Here, the expectation value using this distribution is:

〈x〉n′ =

∫ 1

−1
xn′(x) dx

n′(x) dx
(67)

〈x〉n′ =
b

1 − α
(68)

Thus, if we subtract a background of level α < 1, then we will get a sub-

stantially different distribution. However, as shown in figure 80, we cannot

make any generalizations of the data using this method, as even for relatively

large values of the parity-violating parameter, we still get very large varia-

tion about a “mean” level of generator level to reconstruction observables.

The efficiencies of the sideband-subtracted reconstructions are ≈ 0.09. The

efficiencies of the generator-level events which pass all the cuts are ≈ 0.13.

These flat plots are shown in figures 81 and 82. From the data here, for 10,000

events we have an efficiency of 0.1359± 0.0033 and 〈cos θ〉 = 0.1133± 0.0096

(scaled to 10,000 reconstructed events).
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12 Conclusions

Amazingly, the assumed branching ratio of ≈ 10−4 is implied, given an effi-

ciency of 0.13 and an inferred 25 events out of 106 BB decays, which is at

odds with the literature’s estimate B ≈ 10−5[4].

From the above relations, we see that the parity violating parameter, as

expected, linearly tracks the parity violating observable. Furthermore, if we

take the results of the BB Monte Carlo as a roughly accurate measure of the

branching fraction, then we see that B(B0, B0 → γK±π∓π0) ≈ 2.5 ± 0.5 ×

10−54. In CLEO III, we expect to see 60 million BB pairs and in CLEO II,

we expect to see 10 million BB pairs; thus, considering the efficiency and the

branching fraction, we should see the following number of candidate events:

NCLEOIII = 1500 ± 300 (69)

NCLEOII = 250 ± 50 (70)

Thus, we should see, at most, a 4.6σ effect for CLEO III, which is on the bare

limits of distinguishability; for CLEO II, we should see only a 2.0σ effect.

However, the high level of background, with these event shape variable cuts,

4simulated MC BB decays, resulted in 25 ± 5 events out of 106 which passed all the

cuts to be considered a candidate B
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should make it difficult, if not impossible, to resolve the signal. Fortunately,

although there is a high level of qq continuum backgrounds, there is no cor-

respondingly large BB backgrounds – the relatively high efficiency (before

event shape variable cuts) of extracting this signal decay is due to π0 veto.

13 Further Research

The focus of further research in this topic is in the form of more refined cuts

that remove background without removing signal. These consist of neural

nets which can be effective in strongly discriminating background. Simple

linear neural nets can be used, as well as Fisher Discriminants, in order to

remove the effects of backgrounds by a factor of 105 with less than 50% loss in

signal decay; finally, after establishing cuts that are far more discriminating

to the qq backgrounds, we may employ this analysis with the CLEO III data.
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Figure 79: (left) Plot of the parity-violating trend for all reconstructed events
in the signal region. Here, we have the following α = 0.0922 ± 0.0111 and
β = 0.0039±0.0065. We make no rescaling to a sample size of 10,000 samples,
as we have done in figures 76, 77, and 78.

Figure 80: (right) Here, we plot the ratio between the reconstructed co-
sine helicity angle distribution, without sideband subtraction, to that of
the generator-level data. Here, we include only those values of the parity-
violating parameter (i.e. 2T1T2/(T

2
1 + T 2

2 ) > 0.2 in which the observable is
statistically different from zero.
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Figure 81: (left) Plot of the efficiency, as a function of parity-violating param-
eter (i.e. degree of parity violation), for sideband-subtracted reconstructed
events, out of a simulated total 10,000 events.

Figure 82: (right) Plot of the efficiency, as a function of parity-violating
parameter, for all events (signal and background within the signal) which
pass all the cuts.
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