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A class of unstable modes with azimuthjal wavenumber, in accretion disks with an equilibrium magnetic field B ' Bφ(R, z)eφ +

Bz(R, z)ez, that can transport angular momentum have the following properties: they are radially localized over distances much

smaller than R, the radius of the disk; they require the effects of finite pressure for their excitation; they possess two sets of

singularities in the MHD approximation; and they require a localized diffusion or dissipation operator to resolve the inner singularity

[1,2]. The spectrum of modes about marginal stability was analyzed numerically for linear operators and reported in Ref. [3], where

the existence of separate classes of solutions with different numbers of nodes in the radial direction was demonstrated.

Nonlinear diffusion and dissipation operators have been proposed on the basis of the fact that within the inner singularities, pres-

sures and densities tend to infinity and therefore nonlinear effects become important [4]. The MHD equation describing the radially

ballooning nonaxisymmetric modes [1, 2, 5] is modified into one that smoothly connects the solution within the transition regions

to the MHD solution outside the transition regions [3]. The physical basis of nonlinear operators described in a previous report

[4] is discussed. For the nonlinear operators, the marginal stability condition is analyzed by taking the ratio δ of the width of the

transition layers to the radial extent of the mode to be much less than 1, and the growth rate to be of order δ relative to the orbital

frequency. A spectrum of modes, with different numbers of radial nodes, is mapped for each of the nonlinear operators.
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Magnetorotational Instability

The magnetorotational instability (MRI)[1, 2] was reintroduced in the study of magnetized accretion disks[3] as a fast, powerful
mode to transport angular momentum in accretion disks that are stable to the rotational instability.

• transports particles and angular momentum in MHD plasma.

• maximum growth rate γ ∼ Ω.

• wavenumber of fastest modes k ∼ vA/Ω.

• diffusion coefficient D ≡ k−2γ ∼ αSScsH[4], where αSS = v2

A/c2

s ≡ Shakura-Sunyaev α parameter.

And has been applied to thick disks, which are capable of supporting a large range of MRI modes, due to their large width ∼ radius.

increasing R
eφΩ(R)

Ω

B

R

z

(R)

in
fin

ite
 v

er
tic

al
 e

xt
en

t

radial velocity = R

0.25 0.5 0.75 1 1.25 1.5
KvAz�W

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Γ
�W

Γmax=ÈAÈ

K
fa

st
v
Az

=
�!!!!!!

!!!!!!!!!!
!!!!!!!!!!

-
A

 HA+
2

 W
L

K
ma

x
v
Az

=
�!!!!!!

!!!!!!!!
-
4

 A
W

Figure 1: On left is a cartoon of the MRI in which the disk is infinitely thick vertically, and the mode is of the form
ξ̂ = ξ̃ exp (ikzz + γt), with equilibrium magnetic field B = Bzez. The magnetic tension, with resulting frequency k2

zv
2

A, where
v2

A = B2

z/4πρ is the Alfvén frequency and ρ is the fluid density, between two fluid elements at adjacent radii acts as a “spring”
connecting them and driving the MRI at sufficiently small wavenumbers kz.
On right is the growth rate of MRI for a Keplerian disk Ω(R) ∝ R−3/2. Here A = − 3

2
Ω = RdΩ/dR; maximum growth rate is of the

order Ω, the orbital rotation frequency, and maximum wavenumber kzvA ∼ Ω.



Nomenclature

v2
A =

B2

4πρ
,

Alfvén speed
c2
s ≡ sound speed. λ0 =

γ0

ωAs

As =
v2

A

c2
s

ωA = k‖vA,

shear Alfvén wave

ωAs = k‖

√

v2
Ac2

s

v2
A + c2

s

,

magnetosonic wave

αk =
2

3

∣

∣

∣

∣

d ln Ω

d ln R

∣

∣

∣

∣

,

rotational shear
αz =

3Bφ

2Bz
αk, δ0 =

ωAs

|n0Ω′| = − ωAs

Ωkzαz
,

r =
R − R0

δ0
, Ks =

ωAs

bφΩ

DT = Dµ +
Dmc2

s

c2
s + v2

A

+
Dpv

2
A

c2
s + v2

A

total diffusion coeff.

• Dµ refers to kinetic viscous diffusion coefficient.

• Dm = ηc2/4π refers to magnetic diffusion coefficient (where η is the cgs plasma

resistivity).

• Dp refers to the thermal diffusion coefficient.



Justification and Form for 3D (Nonaxisymmetric) Modes

• For thin disks, the appropriate instabilities are ballooning modes: [5, 6, 7, 8, 9]

v̂R ' ṽR(z) exp (γ0t + ikR (R − R0)).

– they are characterized by ∆R � ∆z � H , disk height.

– This requires that v2
A � c2

s, limiting applicability.

– Properly localized mode (i.e. mode decreases as quickly in z or quicker than density) with

discrete eigenmodes (discrete values of kR, γ0); therefore, it is difficult to construct radially

localized packets.

• Axisymmetry imposes a strict condition between kR and variation in z – since the disk is thin,

the width of modes vertically ∆z < H , and kR must be very large.

• Introducing nonaxisymmetric modes – azimuthal dependence – allows for an extra degree of

freedom. One can choose that combination of total wavenumber in φ and z such that magnetic

field lines are minimally bent, i.e. k·B � kB, where k =
√

k2
z + n02/R2 and B =

√

B2
z + B2

φ.

Form of the 3D nonaxisymmetric modes are then given by:

Â(R, z, φ, t) = Ã(R) exp
(

ikzz + in0φ − iωt
)

With equilibrium magnetic field B ' Bφeφ + Bzez.





Mode Properties[6, 10]

• Eigenmodes with eigenvalues Ks are found for which Re ξ̃ is even, Im ξ̃ is odd.

• These modes are excited for relatively large magnetic energy densities, v2
A ∼ c2

s.

• Mode is localized over distances δ0 = ωAs/ (Ωkzαz) ∼ k‖H/kz � R about the corotation

point, where n0Ω(R) = Re(ω).
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In the MHD approximation to the mode, singularities appear at radii R−R0 = ±δ0 (doppler

shift ω̄ = ±ωAs) and at R − R0 = ±δ0

√
1 + As (doppler shift ω = ±ωA).



Master Equation

• One can form a single-variable dispersion equation that reproduces the behav-
ior in r about the singularities at r2 = 1 and r2 = 1+As, preserving the parity
of the solution in ξ̃:

− α2
z

d

dr

(

[

(r − rb)
2 − 2iΓ0δ1 (r − rb)

] dξ̃

dr

)

'








K2
s

[

1 + As − r2 + 2iΓ0δ1r
]

+
3αk + (4 − 3αk)

(

r2 − 2iΓ0δ1r
)

(r − 1)2 − 2iΓ0δ1 (r − 1) +
2δ1

Z {(r − 1) /δ1}









ξ̃(r)

Where the effects of a finite smoothing operator are not necessary in resolving
the second singularity (see, e.g., [7, 6, 11] for other examples). Here λ0 = Γ0δ1

is the normalized modal growth rate, and the physical size of the transition
region ∆1 = δ1δ0.

• The smoothing operator that describes the inner transition region:

(x̂ − iΓ0) Z (x̂) + iOevenZ (x̂) = 1

Where Oeven is some operator even in x̂, such that the partity of the solution
is preserved.



Linear and Nonlinear Transition Models

• The characteristic function that is used to determine range of normalized growth rates Γ0 = λ0/δ1 [6, 10]:

I (Γ0) =

∫ ∞

−∞
Im Z (x; Γ0) dx ∝ 1

Im ξ(1)

(

d ˜Im ξ

dr

∣

∣

∣

∣

∣

r=1+

− d ˜Im ξ

dr

∣

∣

∣

∣

∣

r=1−

)

One uses a transition operator Oeven such that I (Γ0) 6= π, allowing for instability range 0 < Γ0 < Γmax

0
.

Unlike the simple diffusion operator as seen in magnetic reconnection, this operator must be “localized”
(have varying dissipation rate or diffusion coefficient) about the inner singularity [6, 7, 8]. A diffusion

operator of the form d2/dx2 results in I (Γ0) = π, hence a constant jump in the ξ̃ derivative

as a function of Γ0.

• For those modes whose transition is described by linear diffusion or dissipation operators, with collisional

diffusion coefficients:

– Small growth rates given by following:

γ0 ∼ ω
2/3

As

(

DTδ−2

0

)1/3
=
(

DTk2

zΩ
2α2

z/2
)1/3 � ωAs

– The width of the transition layers:

∆1 = (DT/ (2kzΩαz))
1/3 � δ0

• For nonlinear transition regions (which may arise due to the effects of large pressures, densities at the

inner (R − R0)
2 = δ2

0
transition region), one may get the following [8].

– The transition layer thickness δ1 =
∣

∣

∣
ξ̃ (r = 1) /LN

∣

∣

∣

1/2

.

– Growth rate γ0 ∼ ΩBφ/B
∣

∣

∣
ξ̃ (r = 1) /LN

∣

∣

∣

1/2

.

In the limit that the fluid displacement
∣

∣

∣
ξ̃ (r = 1)

∣

∣

∣
� LNδ2

1
, where LN is the threshold fluid displacement

for the appearance of nonlinear effects.



Examples Solutions of 3D Modal Equation
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On top is a zero-node eigensolution to

the 3D modal equation with a represen-

tative linear smoothing operator, and

on the bottom is a one-node eigenso-

lution with the same smoothing opera-

tor. Note that ξ̃I ≡ Im ξ̃ is an odd func-

tion while ξ̃R ≡ Re ξ̃ is an even function

in r. The number of nodes is defined as

the number of times ξ̃I crosses the r axis

for r > 0. The one node solution resides

at smaller αz than the zero-node solu-

tion, with all other parameters in the

3D modal equation being kept equal.



The Linear Operator (As a Basis of Comparison) ∗

The smoothing operator that describes a “linear” dissipation is a simplification of the simplest

smoothing operator that was described in [5, 7]. In this case, the smoothing operator is given by:

(x̂ − iΓ0) Z (x̂) − iν0L

x̂2
Z (x̂) = 1
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−∞
ZI (x) dx as a function of ν0L and Γ0, for 0 ≤ Γ0 ≤ ∞. Here limΓ0

I (Γ0) → 1/3.

∗The eigenmodal analysis using this transition model is denoted as linear #1



Diffusive Nonlinear Model†

A simple nonlinear diffusion (diffusion because of second derivatives d2/dx2 in the transition equa-

tion) model that has a wide range of I (Γ0) as Γ0 is varied is given by:

xZR + ΓZI −
(
∫ ∞

−∞
ZI (x) dx

)

d2ZI

dx2
= 1 xZI − ΓZR = 0
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†The eigenmode analysis denoted by this simple nonlinear diffusion model is denoted as nonlin-

ear #1



Simple Dissipative Nonlinear Model‡

A dissipative nonlinear model, first introduced and justified in [8], is described by the following

transition equation:

(x − iΓ0) Z(x) − |Z|2 = 1
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From an analytic study,

one finds that I (Γ0) ≈
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Trends For Linear #1 Transition Model
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In red is shown the zero-radial node solutions, in green the one radial node, and in blue the

two-radial node solutions, as As is varied from 1/10 ≤ As ≤ 10, for the linear transition model

linear #1. Here λ0 = Γ0δ1 = 10−3 (hence Γ0 = 1), and the trend to lower values of Ks is seen as

As is varied, keeping all other paramaters constant.
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A more explicit map of the eigenvalue Ks−αz relation

for the linear smoothing operator linear #1, varying

As while keeping λ0 = Γ0δ1 = 10−3 and δ1 = 10−3

constant. As first shown in [5, 7], as As increases

(magnetic energy dominating over thermal energy),

the modes have decreased Ks and they exist at lower

αz – hence in a more toroidal field. Equivalently, for

all three nodal eigenvalues, as As, the Ks decreases –

hence the parallel wavenumber k‖ becomes smaller.

Furthermore, especially for large As it appears that

there exist “double” solutions – two values of Ks for a

given growth rate Γ0 and equilibrium field, represented

by αz – a result that could not be easily observed in

previous work on marginally stable 3D modes [5].
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The Ks−αz relation for the linear

smoothing operator linear #1, for

the case where λ0 = 10δ1 = 10−2

(on top, high growth rate) and

for the case where λ0 = 0.1δ1 =

10−4 (on bottom, low growth rate),

keeping As = 1. As confirmed

in [5, 7], the effects of increasing

the growth rate decreases Ks, as

well as shifting the various nodal

eigensolutions to higher αz (more

toroidal magnetic fields).



Trend For Nonlinear #1 Transition Model
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In red is shown the zero-radial node solutions and in green the one radial node, as As is varied from

1/10 ≤ As ≤ 10, for the nonlinear diffusive transition model nonlin #1. Here λ0 = Γ0δ1 = 10−3

(hence Γ0 = 1), and the trend to lower values of Ks is seen as As is varied, keeping all other

paramaters constant.
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relation for the diffusive nonlinear smoothing

operator nonlin #1, varying As while keeping

λ0 = Γ0δ1 = 10−3 and δ1 = 10−3 constant. The

behavior in αz and Ks of the nodal solutions is

the same as in linear #1.
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linear diffusive smoothing opera-

tor nonlinear #1, for the case

where λ0 = 10δ1 = 10−2 (on top,

high growth rate) and for the case

where λ0 = 0.1δ1 = 10−4 (on

bottom, low growth rate), keeping

As = 1. The trend in Ks and αz as

the the growth rate Γ0 is varied is

the same as in linear #1, although

the change in Ks for each node is

not as severe .



Trends For Nonlinear #2 Transition Model
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In red is shown the zero-radial node solutions, in green the one radial node, and in blue the

two-radial node solutions, as As is varied from 1/10 ≤ As ≤ 10, for the dissipative nonlinear

transition model nonlin #2. Here λ0 = Γ0δ1 = 10−3 (hence Γ0 = 1), and the trend to lower values

of Ks is seen as As is varied, keeping all other paramaters constant.
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A more explicit map of the eigenvalue Ks−αz relation

for the linear smoothing operator linear #1, varying

As while keeping λ0 = Γ0δ1 = 10−3 and δ1 = 10−3

constant. As first shown in [5], as As increases (mag-

netic energy dominating over thermal energy), the

modes have decreased Ks and they exist at lower αz

– hence in a more toroidal field. Equivalently, for all

three nodal eigenvalues, as As, the Ks decreases –

hence the parallel wavenumber k‖ becomes smaller.

Furthermore, especially for large As it appears that

there exist “double” solutions – two values of Ks for a

given growth rate Γ0 and equilibrium field, represented

by αz – a result that could not be easily observed in

previous work on marginally stable 3D modes [5, 7].
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10−4 (on bottom, low growth rate),

keeping As = 1. Note that the
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look substantially different

from the Γ0 = 1 case – in the

case of high growth rate,
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uously connected from zero

radial nodes, to one radial
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The various eigenmodes for the large growth rate case Γ0 = 100.13 in a 3D modal equation described by

nonlinear dissipation, nonlin #2. Each eigenmode, from the first to the fifth as one moves left and downwards,

corresponds in color and position as one moves on the upper Ks branch of the large Γ0 Ks−αz eigenmode graph

from smaller αz (red) to larger αz (magenta). Furthermore, the fourth plot in the sequence (corresponding to

the point on the upper Ks branch at a local minimum) appears to be a “transitional” eigenmode – it has one

radial node but is close to two radial nodes.

The final plot corresponds to the single point identified on the lower Ks branch of the same Ks−αz eigenmode

plot, and appears to have three radial nodes. The nature of the fundamental change in Ks − αz relation for

nonlin #2 smoothing operator is unknown, but may occur for some threshold Γ0 > 1.



Results and Conclusions

• A comparison of the eigenmodes of the 3D equation, as As is varied from small As < 1 to large As > 1

(corresponding to negligible to significant magnetic energies relative to thermal energies), and as growth

rate Γ0 is varied from small to large, reveal similar behaviors between the linear dissipative transition

model linear #1 and the nonlinear diffusive transition model nonlin #1 ; both linear #1 and nonlinear

model nonlin #1 have a trend in allowable Ks and αz, as As and growth rate are varied, as described for

a class of linear transition models [7].

• The nonlinear dissipative model nonlin #2 has a behavior of the eigenmodes Ks, as evidenced by the

Ks − αz eigenmode plot, that is unusual as growth rate is increased for some Γ0 > 1, especially the

agglomeration of several separate nodal solutions for smaller Γ0 into a single higher Ks branch.

• As Γ0 → 0, the eigenvalue plots of the transition models do not converge. This is due to the fact that

as Γ0 → 0, I (Γ0), proportional to the jump in the derivative of ξ̃I across the first singularity r = 1,

approaches 1/3 for linear #1 transition model, but approaches 0 for both nonlinear models.

– However, the nonlinear models also have different “shapes” in their respective Ks − αz graphs, as

well as different central values of αz and maxima of Ks, for a given growth rate, although their

corresponding values of I are separated by order ∼ 1.

– This implies that other features besides the characteristic parameter I, such as the maxima and extent

of ZI , may also play a role; an example that was alluded to in [7, 12] is the fact that “double-humped”

transition functions ZI , such as in linear #1, may be different from “single-humped” ZI as in nonlin

#1 and nonlin #2 .

• Although nonlinear models of the transition may be justifiable due to the fact that pressure, density, etc.



go to infinity at the inner transition region in the MHD approximation [6, 10, 8]; however a linear model

of the transition is more tractable mathematically, since modes are independent of each other.

• The study of a spectrum of modes is hampered by the fact that since the physical mechanism resulting in

linear or nonlinear transitions is unknown, then mathematically the behavior of the transition layer

width δ1 as a function of other parameters of the system (e. g., Ks, As, and total wavenumber)

is not known. The growth rate as a function of the parameter Ks as described in [7] is valid

only if δ1 is kept as a constant.

– For nonlinear operators, the phenomenological fluid displacement LN , at which nonlinear effects be-

come important, is determined by whether finite pressure (thermal energy density) or finite momentum

density of a given eigenmode are more important.

– As an example, if linear transitions are determined solely by collisional diffusion effects (such as

collisional thermal conductivity, kinetic ion viscosity, or electrical resistance), so that the physical

radial extent of the transition region becomes ∆1 = (DT/ [2kzΩαz])
1/3 � ωAs

, then one can show that

from the given substitutions:

δ1 ≡ ratio of scale of mode to scale of transition region = K−1

s (k/k0)
2/3 α1/3

z

(

1 + 4α2

z/9
)1/6 � 1

k0H =

(

DT

cSH

)−1/2

Thus, δ1 is some nontrivial combination of the modal width δ0 and the fixed modal properties (i.e.,

magnetic field, sound velocity, disk height).

• Since the exact form of the relationship between δ1 and the other parameters of the problem are not

well-known, δ1 may also need to be varied – an extra level of dimensionality.
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