The Magnetorotational Instability In Accreting Disks

angular momentum outflow

by Tanim Islam

Society of Physics Students Talk

University of Virginia, January 2005

Extended objects that rotate are naturally disk-

It is relatively easy to lose kinetic energy (due to friction and dissipation), but "hard" to lose angular

object) is observed in a variety of objects, for example...

binary systems (the above is an artist's sketch of what one looks like)

compact objects (such as pulsars, of which the above is the Crab Pulsar)

The most straightforward method to explain accretion is one in which a frictional force in the disk, BETWEEN adjacent surfaces, allows for:

transfer of angular momentum (spin) outwards

ANIMATION OF THE VISCOUS TRANSPORT OF MATTER AND ANGULAR MOMENTUM IN AN ACCRETION DISK

VISCOSITY: SIMPLE DEFINITION

a force of friction
between fluids
moving at different
velocities relative
to each other.

a velocity gradient in the pipe leads to "viscous forces" that tend to make the fluid move all at the same velocity In the presence of a viscosity alone, the velocity profile in a fluid **diffuses** (is described by a diffusion coefficient):

•in Cartesian coordinates:
$$\frac{\partial \mathbf{v}}{\partial t} = \eta_{\nu} \left(\frac{\partial^2 \mathbf{v}}{\partial x^2} + \frac{\partial^2 \mathbf{v}}{\partial y^2} + \frac{\partial^2 \mathbf{v}}{\partial z^2} \right)$$

•in general coordinates:
$$\frac{\partial \mathbf{v}}{\partial t} = \eta_{
u}
abla^2 \mathbf{v}$$

Where η_{ν} is the diffusion coefficient

similar equations describe the diffusion of **heat** (thermal energy) and **particles**

ANIMATION OF DIFFUSION

Particle Model of Viscosity

high particle density, short collision times, **low viscosity**

low particle density, long collision times, **high viscosity**

Viscosity of Everyday Fluids

Water: $\eta_{v}(SI) = 10^{-5} \text{ m}^2 \text{ s}^{-1}$

Air: η_{v} (SI) = 10^{-5} m² s⁻¹

Astrophysical Problem

- The density and temperature of typical accretion disks yields a viscosity too low and a disk size too high disc accretion due to collisional diffusion is TOO SLOW!!
 - Ex: For a typical 1 solar mass compact object or star, with an accretion disk size of 1 AU, the time scale for diffusive accretion: 100 billion years nothing ever forms!
 - Typical accretion disks, with masses of 0.1 solar masses or less, either (1) hardly accrete, or (2) require masses orders of magnitude larger than the central object (not seen)
- Observations of light curves of cataclysmic variables seem to imply that diffusion over a typical sized disk takes place over hours to weeks.
- Some "diffusive" process must occur within the disk the viscosity must be orders of magnitude higher than what could be explained with collisional processes.

α Viscosity Paradigm

Shakura and Sunyaev* from dimensional arguments, and based on what was believed to be the disk properties characterizing viscosity, believed diffusion was enhanced by *hydrodynamic turbulence*.

The turbulence is due to cells within the accretion disk. The size of the cells is **H** (disk thickness); the sound crossing speed is **c**_s (sound speed)

 $\eta_{v} = \alpha c_{s} H$

where α is a constant

*Asbeeonfix toodhAstcophscosit34m227e355vith972)1 (but not too small)

The Magnetorotational Instability

- First discovered by Velikhov¹ and Chandrasekhar²,
 and used as an explanation for rigid-body (constant Ω) rotation in stars.
- Systems in which the **angular velocity** Ω rather than angular momentum ΩR^2 (in hydrodynamic flows) are unstable to these modes.
- Instability grows at the rate of Ω at wavelengths much smaller than the disk height ("turbulence" within the
- disk arising from magnetic fields)

 Sov. Phys. JETP 36, 995 (1959).
- ² Proc. Nat. Acad. Sci. USA **46**, 53 (1960).

Astrophysical Application

- igoplus Balbus and Hawley* showed that the MRI could be applied under much more general and universal conditions (namely that Ω decreases outward radially) and is a global instability (important wherever in the disk that the above condition is met).
- First to apply the use of the MRI in explaining magnetized turbulence, hence enhanced viscosity, within accretion disks.
- From 2D and 3D simulations, showed that magnetic fields from even a weak level saturate at pressures comparable to the gas pressure.
- *Astrophys.filour. 376; 214 (1991)

Schematic Model of MRI

- Points on a magnetic field line are forced to corotate (same Ω)
- The points further out from the equilibrium tend to accelerate outward, while points inside accelerate inwards
- This is all quenched at small enough wavelengths due to the effects of magnetic tension

Spring Model of the MRI

The MRI in accretion disks

Nonlinear Simulations I

no magnetic fields

with magnetic fields

Taken from http://www.astro.virginia.edu/VITA/accdisk.html

Nonlinear Simulations II

Taken from
http://www.astro.vi
rginia.edu/VITA/pa
pers/plunge

Simulation of MRI in the laboratory

Taken from http://complex.umd.edu/mri/

The MRI is simply one manifestation of how magnetic fields modify disk stability

Instability Conditions

cooler.

nonmagnetized magnetized

angular momentum ($\Omega^2 R$) angular velocity (Ω) decreases radially outwards

nomentum

angular

decreases radially outward or upward

entropy density (heat content) decreases upward or radially

outward

temperature **T** decreases upward or radially outward outer or upper regions

Taken from S. Balbus, Astroph. Jour. 562, 909 (2001).

Nonlinear Thermal Instability In Magnetized Plasma

magnetic field lines

temperature

Taken from http://www.astro.princeton.edu/~iparrish