
The Nature of Low-Mass
Rate Accretion Onto
Supermassive Black

Holes
Tanim Islam
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Overview of Talk

What are supermassive black holes, and how
they can be seen?

What are low luminosity galactic nuclei, and
what are their characteristics?

Strong astrophysical evidence of
underluminous black hole accretion: the
Sagittarius A black hole and others.

What are the magnetic field strengths in
these objects?

The relation to my research.
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What is a Supermassive Black Hole?

Primordial black hole formed in galaxies, with
masses M ∼ 10

6
− 10

9
M¯.

Proposed to explain the luminosities of active
galactic nuclei and quasars, L >

∼ 10
42 erg s−1.

Evidence for their existence has been
confirmed independently by, for example:
doppler shifts of gas surrounding black holes,
time-resolved orbits stellar orbits.
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Gas Captured by a Black Hole
Accretes and Radiates
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Extreme Luminosity of (Some) Black
Holes

Can be luminous because extremely efficient
at energy generation, L ∼ 0.1Ṁc

2 as mass
falls into black hole.

A relatively small amount of gravitationally
captured matter can produce the enormous
energies generated by black hole accretion:

L ∼ 10
42
− 10

46 erg s−1 for active galactic
nuclei (central black holes 10

6
− 10

8
M¯).

L >
∼ 10

46 erg s−1 for quasars (central black
holes 10

8
− 10

10
M¯.
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However, there is evidence of orders of
magnitude more SMBHs than strong emitters
(AGNs, quasars, etc.); each galaxy in our
local group may have one (Richstone et al.,
1998), but none are active.

AGN’s and quasars have luminosities
L ∼ LBondi.

Low luminosity nuclei radiate at L ¿ LBondi.
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Evidence for Dim Accretion Nuclei:
Sagittarius A

Sagittarius A is the black hole at the center of the
galaxy, with calculated mass M = 2.6 × 10

6
M¯.

Sagittarius A X-ray
image, Chandra X-
ray observatory
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Other Evidence of Dim Supermassive
Black Hole Accretion

Taken from Loewenstein et al. (2001)
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Baganoff et al. (2003) measures
ne ∼ 10

2 cm−3 and Te ∼ 2 keV at 1
′′ from

Sag. A. Sag. A, located 8.5 kpc away. This
implies:

Rc ' 2.9 × 10
17 cm ≡ 2.4

′′ from Sag. A.
ṀB ∼ 5.6 × 10

−6
M¯ yr−1.

LBondi ∼ 3.2 × 10
40 erg s−1

However, bolometric luminosity of Sag. A:
L ∼ 10

36 erg s−1
∼ 3 × 10

−5
LBondi!
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Features of Low Mass Accretion Rate
Onto BH’s

For sufficiently low accretion rates, hot plasma
accreting onto black holes becomes radiatively
inefficient (Shapiro et al., 1976; Ichimaru, 1977;
Rees et al., 1982; Narayan and Yi, 1994)

advective: very little energy is radiated, most
of the energy remains in the gas, and
L ¿ LBondi

cool electrons: weak ion-electron coupling
combined with efficient radiation, Te < Ti.

geometrically thick: ion thermal energy ∼

gravitational energy.
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Magnetic Fields in Dim Nuclei:
Sagittarius A

Taken from Bower et al. (2003)

Faraday rotation measure implies magnetic pres-
sure <

∼ gas pressure (Marrone et al., 2006).
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How Does This Fit in My Research?

These low-accreting plasmas are dilute
(mildly collisional to collisionless) →
dynamically significant viscosities and
thermal conductivities.

Magnetic fields → anisotropic viscosities and
thermal conductivites can destabilize plasmas
(analogous to the MRI).

Fat disks → signficant gradients of
temperature and pressure that are unstable to
thermal instabilities.
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