The Nature of Low-Mass Rate Accretion Onto Supermassive Black Holes

Tanim Islam

Ecole ´Normale Superieure ´

Overview of Talk

- What are supermassive black holes, and how they can be seen?
- What are low luminosity galactic nuclei, and what are their characteristics?
- Strong astrophysical evidence of underluminous black hole accretion: the Sagittarius A black hole and others.
- What are the magnetic field strengths in these objects?
- **The relation to my research.**

What is ^a Supermassive Black Hole?

- **Primordial black hole formed in galaxies, with** masses $M\sim 10^6-10^9 M_\odot.$
- **Proposed to explain the luminosities of active** galactic nuclei and quasars, $L\gtrsim 10^{42}$ erg s $^{-1}$.
- **Exidence for their existence has been** confirmed independently by, for example: doppler shifts of gas surrounding black holes, time-resolved orbits stellar orbits.

Gas Captured by ^a Black Hole Accretes and Radiates

Extreme Luminosity of (Some) Black Holes

- Can be luminous because extremely *efficient* at energy generation, $L \sim 0.1 \dot M$ $\bar{A}c^2$ as mass falls into black hole.
- A relatively small amount of gravitationally captured matter can produce the enormous energies generated by black hole accretion:
	- $L \sim 10^{42}-10^{46}$ erg s $^{-1}$ for active galactic nuclei (central black holes $10^6 - 10^8 M_{\odot}$).
	- $L \gtrsim 10^{46}$ erg s $^{-1}$ for quasars (central black holes $10^8-10^{10}M_{\odot}.$

■ However, there is evidence of orders of magnitude more SMBHs than strong emitters (AGNs, quasars, etc.); each galaxy in our local group may have one [\(Richstone](#page-12-0) et al., [1998](#page-12-0)), but none are active.

■ AGN's and quasars have luminosities $L \sim L$ Bondi \cdot

Low luminosity nuclei radiate at $L \ll L_{\mathsf{Bondi}}$.

Evidence for Dim Accretion Nuclei: Sagittarius A

Sagittarius A is the black hole at the center of the galaxy, with calculated mass $M = 2.6 \times 10^6 M_{\odot}$.

Sagittarius A X-ray image, Chandra Xray observatory

Other Evidence of Dim Supermassive Black Hole Accretion

Taken from [Loewenstein](#page-12-1) et al. [\(200](#page-12-1)1)

TABLE 1 GALAXY AND ACCRETION FLOW CHARACTERISTICS

^a $0.1\dot{M}_{\text{Bondi}}c^2$.

^b The approximate expectation of the standard ADAF model (see text).

^c The 2-10 keV upper limit from this Letter for the 3" box.

 \triangle The 2-10 keV upper limit at the assumed optical nucleus.

The Nature of Low-Mass Rate Accretion Onto Supermassive Black Holes – p.8/12

- [Baganoff](#page-12-2) et al. [\(2003](#page-12-2)) measures $n_e \sim 10^2$ cm $^{-3}$ and $T_e \sim 2$ keV at $1''$ from Sag. A. Sag. A, located 8.5 kpc away. This implies:
	- $R_{\mathsf{c}} \simeq 2.9 \times 10^{17}$ cm $\equiv 2.4^{\prime\prime}$ from Sag. A.
	- $\,M$ ˙ $M_B\thicksim 5.6\times 10^{-6}~M_\odot$ yr $^{-1}.$

■ L _{Bondi} $\sim 3.2 \times 10^{40}$ erg s⁻¹

■ However, bolometric luminosity of Sag. A: $L \sim 10^{36}$ erg s $^{-1} \sim 3 \times 10^{-5} L_{\sf Bondi}$!

Features of Low Mass Accretion Rate Onto BH's

For sufficiently low accretion rates, hot plasma accreting onto black holes becomes radiatively inefficient [\(Shapiro](#page-12-3) et al., [1976](#page-12-3); [Ichimar](#page-12-4)u, [197](#page-12-4)7; [Rees](#page-12-5) et al., [1982](#page-12-5); [Narayan](#page-12-6) and Yi, [1994](#page-12-6))

- **advective**: very little energy is radiated, most of the energy remains in the gas, and $L\ll L$ Bondi
- cool electrons: weak ion-electron coupling combined with efficient radiation, $T_e < T_i$.
- geometrically thick: ion thermal energy \sim gravitational energy.

Magnetic Fields in Dim Nuclei: Sagittarius A

sure $~\lesssim~$ gas pressure [\(Marrone](#page-13-0) et al., [2006](#page-13-0)).

How Does This Fit in My Research?

- **These low-accreting plasmas are dilute** (mildly collisional to collisionless) \rightarrow dynamically significant viscosities and thermal conductivities.
- \blacksquare Magnetic fields \rightarrow anisotropic viscosities and thermal conductivites can destabilize plasmas (analogous to the MRI).
- Fat disks \rightarrow signficant gradients of temperature and pressure that are unstable to thermal instabilities.

References

- D. Richstone, E. A. Ajhar, R. Bender, G. Bower, A. Dressler, S. M. Faber, A. V. Filippenko, K. Gebhardt, R. Green, L. C. Ho, et al., Nature **395**, A14+ (1998), <http://www.arxiv.org/astro-ph/9810378>.
- M. Loewenstein, R. F. Mushotzky, L. Angelini, K. A. Arnaud, and E. Quataert, ApJ **555**, L21 (2001), <http://www.arxiv.org/astro-ph/0106326>.
- F. K. Baganoff, Y. Maeda, M. Morris, M. W. Bautz, W. N. Brandt, W. Cui, J. P. Doty, E. D. Feigelson, G. P. Garmire, S. H. Pravdo, et al., ApJ **591**, 891 (2003), <http://www.arxiv.org/astro-ph/0102151>.
- S. I. Shapiro, A. P. Lightman, and D. M. Eardley, ApJ **204**, 187 (1976).
- S. Ichimaru, ApJ **214**, 840 (1977).
- M. J. Rees, E. S. Phinney, M. C. Begelman, and R. D. Blandford, Nature **295**, 17 (1982).
- R. Narayan and I. Yi, ApJ **428**, 13 (1994).
- G. C. Bower, M. C. H. Wright, H. Falcke, and D. C. Backer, ApJ **588**, 331 (2003), <http://www.arxiv.org/astro-ph/0302227>.

D. P. Marrone, J. M. Moran, J.-H. Zhao, and R. Rao, ApJ **640**, 308 (2006), <http://www.arxiv.org/astro-ph/0511653>.