Stability In Dilute Magnetized Accretion Plasmas

Tanim Islam Advisor: Steven Balbus 12 December 2005

Disks are natural objects in astrophysics

• much easier to get rid of energy than angular momentum.

The typical method to explain accretion is a viscosity due to differential rotation between disks:

- transfer of angular momentum **outwards**
- transfer of matter **inwards**

Diffusion Equation For Accretion

$$v(R,t) = \frac{1}{R \Sigma d(R^2 \Omega)/dR} \frac{d}{dR} (\eta_v \Sigma R^3 \frac{d \Omega}{dR})$$
$$\frac{d \Sigma}{dt} = -\frac{1}{R} \frac{d}{dR} \left[\frac{1}{d(R^2 \Omega)/dR} \frac{d}{dR} (\eta_v \Sigma R^3 d \frac{\Omega}{dR})\right]$$

• $\eta_v = \alpha_{ss} c_s H$ is the Shakura-Sunyaev¹ viscosity (equivalently, with viscous stress $T_{R\phi} = \alpha_{ss} P$), a useful paradigm in characterizing turbulent viscosity in accreting flows -- the size of the cells is H (disk thickness); the sound crossing speed is c_s (sound speed) ¹A&A 24, 337 (1973).

ANIMATION OF THE VISCOUS TRANSPORT OF MATTER AND ANGULAR MOMENTUM IN AN ACCRETION DISK

The Magnetorotational Instability

- First discovered by Velikhov¹ and Chandrasekhar², and applied to the problem of disk accretion by Balbus & Hawley³.
- Systems in which the **angular velocity** Ω rather than angular momentum ΩR^2 (in hydrodynamic flows) are unstable to these modes.
- Instability grows at the rate of Ω at wavelengths much smaller than the disk height ("turbulence" within the disk arising from magnetic fields).

¹Sov. Phys. JETP **36**, 995 (1959). ²Proc. Nat. Acad. Sci. USA **46**, 53 (1960). ³ApJ **376**, 214 (1991).

Demonstration of MRI

no magnetic fields

with magnetic fields

Taken from http://www.astro.virginia.edu/VITA/accdisk.html

Stability Discriminants for Magnetized Accretion Disks

	nonmagnetized	magnetized, collisional	magnetized, dilute
momentum transport	angular momentum (Ω ² R) decreases radially outward	angular velocity (Ω) decreases radially outward	angular velocity (Ω) decreases radially outward
energy transfer	entropy (log Pp ^{-5/3}) decreases radially outwards.	entropy (log Pp ^{-5/3}) decreases radially outwards.	temperature decreases radially outwards.

angular

Dilute Plasma MHD Instabilities

- Magnetoviscous: analogue to magnetorotational instability in the limit of large ion viscosity.
 - characterized by growth rate saturation at long wavelengths relative to the MRI (k << Ω/v_{a}).
 - fluid elements tethered due to large viscosity along magnetic field lines.

Magnetothermal:

- driven by temperature gradients along magnetic field lines.
- alters the dynamics of the system when disks are fat.
- Magnetoviscous-thermal: large anisotropic magnetized thermal conductivity and viscosity

Astrophysical Applications: NRAFs

• very hot $(k_B T_i \sim m_i c^2)$ and steady flows

around black holes

- nonradiative: dynamically insignificant fraction of energy is radiated (by electrons) as matter accretes onto central object.
- ions are somewhat to significantly hotter than electrons, and adiabatic.
- accretion rates on the order of Eddington mass accretion rate.
- fat disks disk height ~ disk radius R.
- dilute plasmas: dynamically significant thermal conductivities and viscosities.

Main Analytic Models of NRAFs

- ADAF (Advection Dominated Accretion Flows) extension of the thin-disk accretion model out to the regime of very hot optically thin plasmas.
- CDAF (Convection Dominated Accretion Flows) convectively unstable flows with entropy increasing outwards, with convective eddies transporting angular momentum.
- ADIOS (Advection-dominated inflow-outflow solutions) most of disk matter escapes in wind, only small fraction accretes onto black hole. Analytically – accretion rate decrease with radius.

Energy Transport Cannot be Ignored in NRAFs

 From Balbus¹, the equation for energy balance to quadratic order in fluctuations:

$$\frac{5k_{B}\rho}{2m_{i}}\nabla .\langle \delta v_{R}\delta T \rangle + \frac{3k_{B}T}{2m_{i}}\langle \delta \rho \delta v_{R} \rangle \frac{\partial}{\partial R}\ln P \rho^{-5/3} = -\sqrt{2} - T_{R\phi}\frac{d\Omega}{d\ln R}$$

Heat generated through viscosity must be balanced by at least a heat flux.

$$\frac{5\mathbf{k}_{B}\rho}{2\mathbf{m}_{i}}\nabla\langle\langle\delta\mathbf{v}_{R}\delta T\rangle+\frac{3\mathbf{k}_{B}T}{2\mathbf{m}_{i}}\langle\langle\delta\rho\delta\mathbf{v}_{R}\rangle\frac{\partial}{\partial R}\ln P\rho^{-5/3}=-Q-T_{R\phi}\frac{d\Omega}{d\ln R}$$

¹ApJ **600**, 865 (2004).

Regime of Applicability of Instabilities

Disk Model Used in Stability Analysis

Magnetoviscous Dispersion Relation

Magnetothermal Dispersion Relation

Angular momentum flux of magnetoviscous instability

Outward transport of energy and angular momentum

Further Research

- Heat fluxes associated with the nonlinear magnetoviscous-thermal instability, by first examining radial slices, in 2D and 3D.
- Global simulation of a flow with these effects included:
 - what is the flow structure? Does the structure settle into a thin (such as in MRI simulations) or fat disk?
 - what is the temperature profile? Of ions and electrons?
- For both local and global simulations, design diagnostic tests for ATHENA code.

Nonlinear Thermal Instability In Magnetized Plasma

magnetic field lines

temperature

Taken from http://www.astro.princeton.edu/~iparrish