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Recent observations have demonstrated the prevalence of underluminous accretion flows in massive and
supermassive central galactic black holes, for which the best studied example is that of Sagittarius A* at
the center of our Milky Way. These flows are characterized by the radiatively inefficient accretion of a hot,
mildly collisional to highly collisionless, and optically thin plasma onto a black hole. In these plasmas, even
an extremely weak magnetic field can lead to anisotropic heat fluxes and viscous stresses directed along
field lines. This allows for the development of plasmas unstable to rotational shear via anisotropic viscous
stresses (the magnetoviscous instability, or MVI [1]), and to adverse temperature (rather than entropy)
gradients via anisotropic heat fluxes (the magnetothermal instability, or MTI [2]). Furthermore, in these
radiatively inefficient and slender rotationally supported flows, the energy generated through gravitational
infall must be advected through local thermal turbulence.

In this poster we justify our research astrophysically. We explain some of the salient features of hot
underluminous accretion onto black holes, and describe physical models of the MVI and MTI that are
expected to operate in these dilute flows. We demonstrate the salient evolution equations that describe
the MHD dynamics of a dilute plasma, in both the fluid regime (applicable in the outer regions of these
flows) and in the kinetic MHD regime (applicable in the inner highly collisionless regions). We consider
an equilibrium hot and dilute disk, and consider the instability of this disk to the following instabilities:

• In the fluid regime, the magnetoviscous-thermal instability (MVTI) – where both anisotropic viscous
stresses and heat fluxes are dynamically important, and

• In the kinetic regime, the analogue to the MVTI is denoted denote as the collisionless MTI.

We describe salient features of both, as well as demonstrate that these instabilities give the right sign of
accretion torques and heat flux to drive accretion in radiatively inefficient flows. We end with conclusions
and possible effects of the nonlinear MVTI and collisionless MTI in astrophysical objects.

� � �! � � ! "� � #� �! � $� % �� � � & ' � � � ! � �� �

• Only 200 AGNs or quasars (high-luminosity, 10% mass energy efficiency accretion onto black holes)
within the nearest 4× 108 ly according to recent AGN census; BUT extreme commonality of central
massive (M >

∼ 105
M�) and supermassive (M >

∼ 108
M�) black holes [3], implying underluminous

accretion is common.

• Best evidence: Sagittarius A* black hole at the center of our Milky Way.

– M ∼ 2.6 × 106
M� from time-lapse stellar orbits [4, 5].

– ambient conditions from Chandra X-ray data [6] imply luminosity assuming efficient accretion
from gravitational capture of Lcapture ∼ 6 × 1040 erg s−1.

– bolometric luminosity, primarily in the far IR and mm, of Sag. A* L ∼ 6×1036 erg s−1
� LBondi

[7, 8].

• Evidence of underluminous accretion from Chandra X-ray observations of other nearby galaxies:

Galaxy
d

(Mpc)
MBH

(×108
M�)

RBondi

(arcsec)
LBondi

(erg s−1)
LX

(erg s−1)
NGC 1399a 20.5 10.6 0.36 2.3 × 1044 <

∼ 9.7 × 1038

NGC 4472a 16.7 5.65 0.24 4.5 × 1043 <
∼ 6.4 × 1038

NGC 4636a 15.0 0.791 0.049 4.5 × 1041 <
∼ 2.7 × 1038

M 82b 18.4 30 2 5 × 1044
∼ 7 × 1040

Sag. A*c 8.5 × 10−3 0.026d 2.2 6 × 1040 2.2 × 1033

aTaken from [9]
bTaken from [10]
cTaken from [6]
dMass measurement taken from [4, 5]

Time resolved orbits of stars or-

biting Sagittarius A*, taken from

http://www.astro.ucla.edu/ ghezgroup/gc

False color Chandra X ray image of 2-10 keV

emission within 2 pc of the central galactic black

hole Sagittarius A*. The diffuse emission is at-

tributed mainly to local shock heating and super-

nova heating, while point sources are associated

with compact stellar emission. Image source is

http://chandra.harvard.edu/photo
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• Mildly collisional at best. The following table borrowed from [11] and other sources demonstrates
this, with Chandra observations at the outer 1“.

Galaxy
n (1”)

( cm−3)
T (1”)
(107 K)

R (1”)
( cm)

λ (1”) /R (1”) λ (1”) /RBondi

Sag. A*a 100 2.3 1.3 × 1017 0.4 0.4
NGC 1399b 0.3 0.9 3.1 × 1020 0.009 0.02
NGC 4472b 0.2 0.9 2.5 × 1020 0.016 0.07
NGC 4636b 0.07 0.7 2.2 × 1020 0.032 0.6

M 82c 0.17 0.9 2.7 × 1020 0.018 0.02
M 32d 0.07 0.4 1.2 × 1019 0.2 1.3

aTaken from [6]
bTaken from [9]
cTaken from [10]
dTaken from [12]

Inner regions become highly collisionless.

• Radiatively inefficient and optically thin – very little energy generated by gravitational infall
is radiated away, and the flow remains transparent to radiation.

• Two-temperature – ion-electron coupling is weak enough that ions may reach temperatures ∼ 1012

K in the inner regions, while electron maximum temperatures T ∼ 109
− 1010 K.
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• Plasma dynamics is considered in a rotating, cylindrical frame centered about the central mass.

– Local velocity u = V − RΩ(R)φ̂.

– p: total pressure; ρ: mass density.

– B: magnetic field; B: magnetic field magnitude.

• Equilibrium velocity V0 ≡ RΩ(R)φ̂ with radial force balance:

ρ0Ω
2R =

∂p0

∂R
+

GMρ0

R3
.

With radial inflow velocities |vR| � RΩ.

• Equilibrium nonradial magnetic fields:

B0 = B0

(

φ̂ cos χ + ẑ sin χ
)

.

• Isotherms along magnetic field lines (high thermal conductivity along magnetic fields), T0 ≡ T0 (R).

• Equilibrium profiles with radial

αT = −H
∂ lnT0

∂R
> 1, αP = −H

∂ ln P0

∂R
> 1, H =

√

P0/ρ0

GM/R3
.

In a dilute plasma, even a weak magnetic field (with negligible Lorentz forces) may easily be strong enough
that the ion gyrofrequency > collisional frequency.

• Heat flux and viscosity:

heat flux : q = qb,

viscosity : σ = σbb

(

bb −

1

3
I

)

• In the MVI, anisotropic viscosity destabilizes plasmas with angular velocity gradients [1]

• In the MTI, anisotropic heat flux destabilizes plasmas with adverse temperature (rather than entropy)
gradients [2].
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• For collisionless plasmas, damping long wave-
length modes with phase velocities of the order
sound speed k‖

<
∼ Ω (P0/ρ0)

1/2.

• For weakly magnetized plasmas, reducing to
the fluid approximation for ν >

∼ Ωβ – i.e., when
wavelength of fastest growing modes <

∼ λi, ion
collisional mean free path [18].
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• Nonlinear development of the collisionless MTI
(or MVTI), from [19], may imply a disk flow
whose ”averaged” energetics is dominated by
radial thermal conductivity. A first attempt to
consider a large phenomenological viscosity has
been done by [11, 20].

• Pressure anisotropy easily excited in col-
lisionless plasmas, may lead to an astro-
physical flow in which the viscous pressure
∣

∣p‖ − p⊥
∣

∣

<

∼ p/β threshold unstable to gyroki-
netic firehose/mirror instabilities (see, e.g., [21],
for evidence of solar wind threshold instability).

• Global simulations are necessary for descrip-
tions of radiatively inefficient flows; codes that
explicitly conserve all energy, such as Athena
[22], are necessary to model the nonlinear rota-
tional MTI.
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Evolution of the temperature profile [19], with only an anisotropic heat flux, in a magnetized fluid in which
the bottom is kept hot and the top is kept cool. The bulk of the fluid quickly reaches isothermality due to
the MTI.

0.5 1 1.5 2
k×vA�W

0.25

0.5

0.75

1

1.25

1.5

1.75

2

G
�W

Ν�W = 0

Ν�W = 101

Ν�W = 102

Ν�W = 3*103

References

[1] S. A. Balbus, ApJ 616, 857 (2004).

[2] S. A. Balbus, ApJ 562, 909 (2001).

[3] D. Richstone, E. A. Ajhar, R. Bender, G. Bower,
A. Dressler, S. M. Faber, A. V. Filippenko, K. Gebhardt,
R. Green, L. C. Ho, et al., Nature 395, A14+ (1998).
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Constituent MHD equations in a dilute plasma, where u = V − RΩ(R)φ̂:

„

∂

∂t
+ Ω

∂

∂φ

«

ρ + ∇ · (ρu) = 0,

ρ

„

∂

∂t
+ Ω

∂

∂φ

«

u + 2Ωẑ × ρu + Ω′RρuRφ̂ = −∇

„

B2

8π

«

+
B · ∇B

4π
+ ∇ ·

„

σbb

»

bb −
1

3
I

–«

+
ρ

ρ0

∇p0,

3

2

„»

∂

∂t
+ Ω

∂

∂φ

–

p + ∇ · (pu)

«

+ p∇ · u = ∇ · (qb) + σbb

„

b · ∇u · b −
1

3
∇ · u + Ω′RbRbφ

«

,

„

∂

∂t
+ Ω

∂

∂φ

«

B + u · ∇B = B · ∇u− B (∇ · u) + Ω′RBRφ̂.

• Fluid: the viscous stress and parallel heat flux are given by the following, where ηκ and ην are (electron) thermal and (ion) viscous
diffusivities whose values are given by [13]

q = 5

2
ηκb · ∇ (kBTe/me) , σbb = 3ρην

„

b · ∇u · b −
1

3
∇ · u + Ω′RbRbφ

«

The energy balance equation:

• Kinetic: parallel and perpendicular pressures to the magnetic field field δp‖ and δp⊥.

p = 2

3
p⊥ + 1

3
p‖, σbb = p‖ − p⊥.

Pressures calculated from a reduced Boltzmann equation [14] in rotating frame:

„

∂

∂t
+ Ω

∂

∂φ

«

fs +
`

v‖b + u⊥

´

· ∇fs +

„

ZseE‖

ms

+
mi

ρ0ms

b · ∇p0s

«

∂fs

∂v‖
+

„

−b ·

„»

∂

∂t
+ Ω

∂

∂φ

–

u⊥ +
ˆ

u⊥ + v‖b
˜

· ∇u⊥

«

+

1

2
v2

⊥∇ · b

«

∂fs

∂v‖
+

“

2Ωẑ · (b × u) − Ω′RbφR̂ ·
`

u⊥ + v‖b
´

” ∂fs

∂v‖
= C [fs] .

– s refers to ions or electrons, (i) for ions, (e) for electrons.

– u⊥ = u − b (u · b) is MHD flow velocity perpendicular to the magnetic field; E‖ = E · b is the (parallel) electric field that ensures
quasineutrality, ni = ne.

– v‖ and v⊥ are velocities of particle distribution function fs

`

v‖, v⊥,x, t
´

, about equilibrium flow, perpendicular and parallel to
magnetic field.

Term in red is mirror force, blue are noninertial forces arising from a differentially rotating fluid (Coriolis and tidal forces), dark green are
forces arising from equilibrium gradients, and C [fi] is a very simple collision operator [15].

ps‖ = 2πms

R

fsv2

‖
dv‖v⊥ dv⊥, ps⊥ = 2πms

Z

fs

„

1

2
v2

⊥

«

dv‖v⊥ dv⊥

Modal analysis of the collisionless MTI/MVTI:

• Axisymmetric perturbations δA ∝ exp (Γt + ikZz), Γ the growth rate, kZ the vertical wavenumber.

• Both fluid and kinetic equilibria have a single temperature as a simplification.

• fluid approach applicable in outer disk: fixed Prandtl number Pr = ηκ/ην ≈ 1/101 [13].

Necessary conditions to get accretion (inward net mass flux) in radiatively inefficient flows,
with our problem setup

• Azimuthal stress: TRφ =

〈

ρ0δuRδuφ −
δBRδBφ

4π
+ δσbbδbR cos χ

〉

> 0.

• heat flux: qR =

〈

5ρ0kB

2mi

(δTi + δTe) δuR + δqδbR −
1

3
δσbbδuR

〉

> 0.

• Where 〈δaδb〉 is a spatially-averaged quadratic correlation of fluctuations.

• Heat flux condition first noted in [16], and modifications to azimuthal stress (quadratic torque) was
also noted in [17]. We estimate as following:

TRφ ≡ Re

(

ρδuRδu∗

φ −
δBRδB∗

φ

4π
+ δσbbδb∗R cos χ

)

> 0,

qR ≡ Re

(

5ρ0kB

mi

(δTi + δTe) δu∗

R + δqδb∗R −
1

3
δσbbδu∗

R

)

.


