Nomenclature

o2 = B
drp’ ¢ = sound speed. Ao = o
W
Alfvén speed As
2 2
viC
2 wa = kjvyg, wa, =k A
A, U 4= ks Vg
Cs shear Alfvén wave .
magnetosonic wave
2 |dIn{)
ap = — :
“T3|dnR o =Ps, 5= WA _ WA
2B, (nVY| Qk, o,
rot. shear
D,,c? D, v’
_ Dr =D, + "=+ 14
) K, = TR R
(50 b¢Q

total diffusion coef.




Magnetorotational Instability

The magnetorotational instability (MRI)[1, 2| was reintroduced to
magnetized accretion disks|3| as a fast, powerful method to transport

angular momentum in accretion disks.

e transports particles and angular momentum in MHD plasma.
e maximum growth rate vy ~ .
e wavenumber of fastest modes k ~ v 4 /€.

e diffusion coefficient D = /f_QW ~ aggcsH [4], where agg =

0?4 /¢ = Shakura-Sunyaev o parameter.



Justification for 3D
(Nonaxisymmetric) Modes

e The axisymmetric MRI may be approppriate for thick disks, where ¢, ~ vy <
VA
e For thin disks, the appropriate instabilities are ballooning modes: [5, 6, 7, §]
U =~ Ug(2)exp (Yot + tkr (R — Ry)).
— they are characterized by Ap < A, < H, disk height.
— This requires that v5 < ¢2, limiting applicability.
— Properly localized mode (i.e. mode decreases as quickly in z or quicker than

density) with discrete eigenmodes (discrete values of kg, 7); therefore, it

is difficult to construct radially localized packets.



Accretion Disk Structure

o The disk is cold, hence ¢y < vy = R{). This implies thin disk —
H (disk height) < R (disk radius): c¢s/vy ~ H/R.

o The disk is self-gravitating, Mgk < Meentral object, Which im-
dan‘ 3

dnR| = 2

plies a largely Keplerian rotation profile

e Radial magnetic fields Bp < Bz, By.

e large ionization fraction & astrophysically very long mean free

paths — MHD condition may be valid within much of disk.
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The structure of cold accretion disk, where disk height H < R.



Properties of Instability|5]

e cquilibrium conditions are given by the following:
— magnetic field: B >~ Byey + B.e..
— velocity: v = RS(R)ey

e Modes are three-dimensional (nonaxisymmetric):

E=¢ (}2 exp ([v0 — iw]t + ik.z + in9)

Where € = — is the vector displacement, n" is the azimuthal wavenumber,

dt
and~yy > 0 is the growth rate.

e Finite compressibility, V - v # 0, also implies a finite plasma pressure p # 0.

e Modes are radially localized about corotation point, so that frequency w = n'Q.

o k| = |(k-B)/B| < |k.|, allowing for large range of wavenumber k and

large range of magnetic field ratios «, that may excite this instability.



The Master Equation|6]

| 211,01 dg
_ Oéz ([(T — Tb>2 — 21\ (T - Tb) - Y ({7“ _ Tb}b/51; )\0/51)] dT)

3ay, + (4 — 3ay,) (r® — 2iAgr)
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(r — 1)2 — 2iAg(r— 1)+ Z({r—l}/}h;)\g

Kg (r% _ 2 — 22’)\07") §+
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o0y = (Dp/ (wa.62)) " rp = VIt Ay

Where Ogyen is some even operator (i.e. diffusion, dissipation) that

smooths out singularities at 72 = 1,1 + As.



Mode Properties|5]

e Eigenmodes with eigenvalues K are found for which Re € is even,

Im € is odd.

e These modes are excited for relatively large magnetic energy den-

sities, 0?4 ~ cg.

e Mode is localized over distances 0 = WAS/ (k) ~ kHH/kZ <
R.

e Small growth rates given by following:

2/3 N\ 1/3 1/3
Yo ~ wA/s (DT5O 2) = (DT/GEQQCY%/Z) / K WA,-

e The width of the transition layers: Ay = (Dp/ (kaﬂozz))l/g <
40.
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In the MHD appré)ximation to the modé, singularities' appear at
radii R — Ry = £ (doppler shift © = twy ) and at R — Ry =

+00v/1 + Ag (doppler shift w = twy).



Transition Regions [5, 9]

e The characteristic function that is used to determine range of

normalized growth rates ['g = A\g/d;:

i 1 dlm & dIm &
7 (Ty) = ImZ (z:T -
(To) /_OO m 7 (x;To) dz Im&(1) dr dr

r=17 r=
e Once can introduce a varying operator Oeyen(z) such that Z (I'g) #

, allowing for instability range 0 < I'g < I'g™.
plot showing relation Z using

a representative model of the

transition.




e Previous work on the form of function Z across transition region

employed following models|6, 7|:

— simplest: (CE — 1’y — WOL2> Z (z;Ty) = 1.

x2+ea
- 2
. . . 27075 d
inclusive (:L’ 1L 2+€ Zd:c )
d 2dZ
— diffusive: (z —ilg) Z + z% (ii; dm) = 1.

—nonlinear: (z — o) Z +|Z]* = 1.

These preserve parity across transition (Im Z is even, Re Z is
odd), and lim, o, Z (z; ') — (z — iTy) ™!

e [or linear transition operators, 01 = (DT / (5Ow A ))1/ 4



General Mode Structure

€r

Zero node solution for ay, = 1.6, Ag = 1, \g = 07 = 0.01,

eq = 0.1, with eigenvalue K¢ = 0.887, for simplest transition

model.



Zero node solution for a, = 1.6, Ag = 1, \g = 07 = 0.01,
eo = 0.1, with eigenvalue K¢ = 1.026, for simplest transition

model.



e Near marginal stability A\g — 0, the modal spectrum is largely in-

dependent of details of the (parity-preserving) transition model|6.
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Nonlinear Transition Model|7]

e From physical arguments, since ¢ (normalized velocity parallel to magnetic

field) — oo, the transition function 2

ér=1)
e

A
9 .

(I‘ — ZFO> Z

Where Ly is some length scale.

e In the limit

é (r = 1)| > L 07, the diffusion term is negligible:

. 1/2
— transition layer thickness is given by ¢; = (|§ (1)/L ND .
— The transition equation reduces to: (z —il'g) Z + |Z|* = 1.
. 1/2
— growth rate is given by vy ~ QB;/B (|§(1)| /LN> .



Quasilinear Fluxes|5, 6, 7, 9]

e (Quasilinear angular momentum flux is given by:

BpB
F?L ~ Ry <<,02A)R2A}¢ — fﬂ_ ¢>> + R%Q <<ﬁ@¢>>
Quasilinear particle flux is given by:
L A
[ = ((pig))

Where:

<<...>>—/_O; dr/jl% Ozﬂdcp




e [rom symmetries of the master equation:

— From|[6]:

1(A/<:Ak>|< ~kx A~k

n'vp +n vR)ocr’vﬁ%Q

, (odd function)

2

x This implies that particle flux — 0 in quasilinear approximation.

* These modes fall into the class of “particle mixing” modes[10].
— The angular momentum flux is given by|[7, 5, 6]:
1 — 72— 2X

o0 2
T9Lk ~ ~ OpR / dr | >0

x An estimation of diffusion coeflicient requires the saturation of displace-

3ay + 2 ¢k

ment

¢ ‘ ~ 0y, with following diffusion coefficients D :

x D~ v ¢ S) for B, < By.

BB, k.()

D 1/3
x Dy~ ( L 2) (CSH>2/3 for B, ~ By.
(k-H)



Quasilinear Heat Accumulation

e Rate of heat accumulation from single mode of wavenumber k:

4 BrB
Sk~ { { pAV v — = (Q+ YR) =E2
3 41 .

16 QQ /OO 1 — %@k‘|‘ (TQ‘I‘)\g) (1 + 3 |:1fA
— 3 —o0 M+ 202 (r2 4+ 1) + (r2 — 1)°

¢@k}>‘§ | I

e for B, ~ B¢:

Dy \Y? —4/3
S~ (22) ket
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