Nomenclature

Magnetorotational Instabilit y

The magnetorotational instabilit ^y (MRI)[1, 2] was reintroduced to magnetized accretion disks[3] as a fast, p o werful metho d to transport angular momentum in accretion disks.

- transports particles and angular momentum in MHD plasma.
- maximum growth rate $\gamma \sim \Omega$.
- wavenumber of fastest modes $k \sim v_A/\Omega$.
- diffusion coefficient $D \equiv k$ $^{-2}\gamma \sim \alpha_{SS}c_sH[4]$, where α_{SS} = $v \$ 2 ${2\over A}/c_s^2$ \equiv Shakura-Sunyaev α parameter.

Justification for 3D(Nonaxisymmetric) Modes

- The axisymmetric MRI may be approppriate for thick disks, where $c_s \sim v_\phi \ll$ v_{Az} .
- For thin disks, the appropriate instabilities are ballooning modes: [5, 6, 7, 8] $v\,$ ˆ $\hat{v}_R \simeq \tilde{v}$ $\tilde{v}_R(z) \exp \left(\gamma_0 t + i k_R \left(R - R_0\right)\right).$
	- they are characterized by $\Delta_R \ll \Delta_z \ll H$, disk height.
	- This requires that $v_A^2 \ll c_s^2$, limiting applicability.
	- $-$ Properly localized mode (i.e. mode decreases as quickly in z or quicker than density) with *discrete* eigenmodes (discrete values of k_R , γ_0); therefore, it is difficult to construct radially localized packets.

Accretion Disk Structure

- The disk is cold, hence $c_s \ll v_\phi = R\Omega$. This implies thin disk H (disk height) $\ll R$ (disk radius): $c_s/v_\phi \sim H/R$.
- The disk is self-gravitating, $M_{\text{disk}} \ll M_{\text{central object}}$, which implies a largely Keplerian rotation profile $\left|\frac{d\ln\Omega}{d\ln R}\right| \simeq \frac{3}{2}$.
- Radial magnetic fields $B_R \ll B_z, B_\phi$.
- large ionization fraction & astrophysically very long mean free paths – MHD condition may be valid within much of disk.

The structure of cold accretion disk, where disk height $H \ll R$.

Properties of Instability [5]

- equilibrium conditions are given by the following:
	- magnetic field: $\mathbf{B} \simeq B_{\phi} \mathbf{e}_{\phi} + B_{z} \mathbf{e}_{z}$.

– velocity: $\mathbf{v} = R\Omega(R)\mathbf{e}_{\phi}$

• Modes are three-dimensional (nonaxisymmetric):

$$
\hat{\boldsymbol{\xi}} = \tilde{\boldsymbol{\xi}}(R) \exp\left([\gamma_0 - i\omega] t + ik_z z + in^0 \phi \right)
$$

Where
$$
\boldsymbol{\xi} \equiv \frac{d\mathbf{v}}{dt}
$$
 is the vector displacement, n^0 is the azimuthal wavenumber, and $\gamma_0 > 0$ is the growth rate.

- Finite compressibility, $\nabla \cdot \hat{\mathbf{v}} \neq \mathbf{0}$, also implies a finite plasma pressure $\hat{p} \neq 0$.
- Modes are radially localized about corotation point, so that frequency $\omega = n^0 \Omega$.
- •• $|k_{\parallel}| = |(\mathbf{k} \cdot \mathbf{B})/B| \ll |k_z|$, allowing for large range of wavenumber **k** and large range of magnetic field ratios α_z that may excite this instability.

The Master Equation[6]

$$
- \alpha_z^2 \left(\left[(r - r_b)^2 - 2i\lambda_0 (r - r_b) + \frac{2r_b \delta_1}{Y(\{r - r_b\} / \delta_1; \lambda_0 / \delta_1)} \right] \frac{d\tilde{\xi}}{dr} \right)
$$

$$
K_s^2 \left(r_b^2 - r^2 + 2i\lambda_0 r \right) \tilde{\xi} + \frac{3\alpha_k + (4 - 3\alpha_k) (r^2 - 2i\lambda_0 r)}{(r - 1)^2 - 2i\lambda_0 (r - 1) + \frac{2\delta_1}{Z(\{r - 1\} / \delta_1; \lambda_0)}}
$$

•
$$
(x - i\Gamma_0 + i\mathcal{O}_{\text{even}}) Z(x; \Gamma_0) = 1
$$

\n• $\left(x - i\Gamma_0 + i\frac{D_p + D_m}{D_\mu + D_m c_s^2 / (v_A^2 + c_s^2) + D_p v_A^2 / (c_s^2 + v_A^2)} \frac{d^2}{dx^2}\right) Y(x; \Gamma_0) = 1.$

$$
\bullet \delta_1 = \left(D_T / \left(\omega_{A_s} \delta_0^2\right)\right)^{1/3} \qquad \qquad r_b = \sqrt{1 + A_s}
$$

Where $\mathcal{O}_{\text{even}}$ is some even operator (i.e. diffusion, dissipation) that smooths out singularities at $r^2 = 1, 1 + A_s$.

Mode Properties[5]

- Eigenmodes with eigenvalues K_s are found for which $\text{Re}\,\tilde{\xi}$ ξ is even, Im $\tilde{}$ ξ is odd.
- These modes are excited for relatively large magnetic energy densities, $v_A^2 \sim c_s^2$.
- Mode is localized over distances $\delta_0 = \omega_{A_s}/\left(\Omega k_z \alpha_z\right) \sim k_{\parallel} H/k_z \ll$ R.
- Small growth rates given by following: $\gamma_0 \sim \omega$ ²/³ ${2/3\over A_s}\Big(D_T\delta_0^{-2}\Big)^{1/3}=\big(D_T k_z^2\Omega^2\alpha_z^2/2\big)^{1/3}\ll \omega_{A_s}.$
- The width of the transition layers: $\Delta_1 = (D_T/(2k_z \Omega \alpha_z))^{1/3}$ « δ_0 .

Transition Regions [5, 9]

• The characteristic function that is used to determine range of normalized growth rates $\Gamma_0 = \lambda_0/\delta_1$:

$$
\mathcal{I}\left(\Gamma_0\right) = \int_{-\infty}^{\infty} \text{Im}\,Z\left(x;\Gamma_0\right)\,dx \propto \frac{1}{\text{Im}\,\xi(1)} \left(\frac{d\text{Im}\,\xi}{dr}\Bigg|_{r=1^+} - \frac{d\text{Im}\,\xi}{dr}\Bigg|_{r=1^-} \right)
$$

• Once can introduce a varying operator $\mathcal{O}_{\text{even}}(x)$ such that $\mathcal{I}(\Gamma_0)\neq 0$

• Previous work on the form of function Z across transition region employed following models[6, 7]:

$$
-\text{simplest: } \left(x - i\Gamma_0 - \frac{i\nu_{0L}}{x^2 + \epsilon_a^2}\right) Z(x; \Gamma_0) = 1.
$$

$$
-\text{inclusive: } \left(x - i\Gamma_0 - \frac{i\nu_{0L}}{x^2 + \epsilon_a^2} + i\frac{d^2}{dx^2}\right) Z = 1.
$$

$$
-\text{diffusive: } (x - i\Gamma_0) Z + i\frac{d}{dx} \left(\frac{\epsilon + x^2 dZ}{1 + x^2 dx}\right) = 1.
$$

$$
-\text{nonlinear: } (x - i\Gamma_0) Z + |Z|^2 = 1.
$$

These preserve parity across transition (Im Z is even, Re Z is odd), and $\lim_{|x| \to \infty} Z(x; \Gamma_0) \to (x - i\Gamma_0)^{-1}$.

• For linear transition operators, $\delta_1 = \left(D_T / \left(\delta_0^2 \omega_{A_s}\right)\right)^{1/3}$.

General Mode Structure

model.

Zero node solution for $\alpha_z = 1.6, A_s = 1, \lambda_0 = \delta_1 = 0.01,$ $\epsilon_a = 0.1$, with eigenvalue $K_s = 1.026$, for simplest transition model.

•

• Near marginal stability $\lambda_0 \rightarrow 0$, the modal spectrum is largely independent of details of the (parity-preserving) transition model [6].

Mode spectrum for simplest transition model, $\lambda_0 = 0.001, \delta_1 = 1$ $0.01, \, A_s=1, \, \nu_{0L}=1, \, \epsilon_a=0.1.$

Nonlinear Transition Model[7]

• From physical arguments, since $\tilde{\zeta}$ ζ (normalized velocity parallel to magnetic field) $\rightarrow \infty$, the transition function Z:

$$
(x - i\Gamma_0) Z + \left(\frac{\left|\tilde{\xi}(r=1)\right|}{L_N \delta_1^2}\right) |Z|^2 + i\frac{d^2 Z}{dx^2} = 1
$$

Where L_N is some length scale.

- \bullet In n the limit $|\tilde{\xi}(r=1)| > L_N \delta_1^2$, the diffusion term is negligible:
	- transition layer thickness is given by $\delta_1 = \left(\left| \xi(1)/L_N \right| \right)^{1/2}$.
	- The transition equation reduces to: $(\bar{x} i\Gamma_0) Z + |Z|^2 = 1$.
	- growth rate is given by $\gamma_0 \sim \Omega B_\phi/B \left(\left| \tilde{\xi}(1) \right| / L_N \right)^{1/2}$.

Quasilinear Fluxes[5, 6, 7, 9]

• Quasilinear angular momentum flux is given by:

$$
\Gamma_J^{QL} \simeq R_0 \left<\left<\rho \hat{v}_R \hat{v}_\phi - \frac{\hat{B}_R \hat{B}_\phi}{4\pi} \right>\right> + R_0^2 \Omega \left<\left<\hat{\rho} \hat{v}_\phi \right>\right>
$$

Quasilinear particle flux is given by:

$$
\Gamma_p^{QL}\equiv\left<\left<\hat{\rho}\hat{v}_\phi\right>\right>
$$

Where:

$$
\langle \langle \ldots \rangle \rangle = \int_{-\infty}^{\infty} dr \int_{-1}^{1} \frac{dz}{H} \int_{0}^{2\pi} d\phi
$$

• From symmetries of the master equation:

- From[6]:
\n
$$
\frac{1}{2} (\hat{n}^k \hat{v}_R^{k*} + \hat{n}^{k*} \hat{v}_R^k) \propto r |v_R^k|^2
$$
, (odd function)
\n* This implies that particle flux \rightarrow 0 in quasilinear approximation.
\n* These modes fall into the class of "particle mixing" modes[10].

The angular momentum flux is ^given by[7, 5, 6]:

$$
\Gamma_J^{QL,k} \simeq \gamma_0 \Omega \rho R \left(\int_{-\infty}^{\infty} \left[3\alpha_k + 2 \frac{1 - r^2 - 2\lambda_0^2}{(1 - r^2)^2 + 4\lambda_0^2} \right] \left| \hat{\xi}^k \right|^2 dr \right) > 0
$$

∗ An estimation of diffusion coefficient requires the saturation of displacementt $|\tilde{\xi}| \sim \delta_0$, with following diffusion coefficients D_J :

$$
* D_J \sim \gamma_0 \left(\frac{B_\phi^2}{BB_z k_z \Omega}\right)^2 \text{ for } B_z \ll B_\phi.
$$

$$
* D_J \sim \left(\frac{D_T}{\left(k_z H\right)^2}\right)^{1/3} \left(c_s H\right)^{2/3} \text{ for } B_z \sim B_\phi.
$$

Quasilinear Heat Accumulation

• Rate of heat accumulation from single mode of wavenumber $\mathbf k$:

$$
S_{\mathbf{k}} \simeq \left\langle \left\langle \hat{\rho} c_s^2 \nabla \cdot \hat{\mathbf{v}} - \frac{4}{3} (\Omega + \Omega' R) \frac{\hat{B}_R \hat{B}_\phi}{4\pi} \right\rangle \right\rangle_{\mathbf{k}}
$$

$$
\simeq \frac{16}{3} \rho \Omega^2 \gamma_0 \left(\int_{-\infty}^{\infty} \frac{1 - \frac{3}{2} \alpha_k + (r^2 + \lambda_0^2) \left(1 + \frac{3}{2} \left[\frac{A_s}{1 + A_s} - b_\phi^2 \alpha_k \right] \right)}{\lambda_0^4 + 2 \lambda_0^2 (r^2 + 1) + (r^2 - 1)^2} \left| \hat{\xi}^k \right|^2 dr \right)
$$

• For
$$
B_z \sim B_\phi
$$
:

$$
|S_{\mathbf{k}}| \sim \left(\frac{D_T}{c_s H}\right)^{1/3} (k_z H)^{-4/3} p\Omega
$$

References

- [1] E. Velikhov, *Soviet Phys. JETP* **36**, 995 (1959).
- [2] S. Chandrasekhar, *Proc. Nat. Acad. Sci.* 46, 253 (1960).
- [3] S. A. Balbus and J. Hawley, $Ap. J. 400, 610 (1992)$.
- [4] N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24 , 337 (1973).
- [5] B. Coppi and P. S. Coppi, Ann. Phys. **231**, 134 (2001).
- [6] B. Coppi, R. Bhatt, and I. Dimov, M. I. T. (RLE) Report PTP-01/01 (2001).
- [7] B. Coppi and P. S. Coppi, M. I. T. (RLE) Report PTP-01/04 (2001) , submitted to *Phys. Rev. Lett.*
- [8] B. Coppi and E. A. Keyes, M. I. T. (RLE) Report PTP-02/02 (2002) , submitted to $Ap. J.$
- [9] B. Coppi and P. S. Coppi, *Phys. Rev. Lett.* **87**, 051101-1 (2001).
- [10] B. Coppi and C. Spight, *Phys. Rev. Lett.* 41, 551 (1978).