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Magnetorotational Instability

The magnetorotational instability (MRI)[1, 2] was reintroduced to

magnetized accretion disks[3] as a fast, powerful method to transport

angular momentum in accretion disks.

• transports particles and angular momentum in MHD plasma.

• maximum growth rate γ ∼ Ω.

• wavenumber of fastest modes k ∼ vA/Ω.

• diffusion coefficient D ≡ k−2γ ∼ αSScsH [4], where αSS =

v2
A/c2

s ≡ Shakura-Sunyaev α parameter.



Justification for 3D
(Nonaxisymmetric) Modes

• The axisymmetric MRI may be approppriate for thick disks, where cs ∼ vφ �
vAz.

• For thin disks, the appropriate instabilities are ballooning modes: [5, 6, 7, 8]

v̂R ' ṽR(z) exp (γ0t + ikR (R − R0)).

– they are characterized by ∆R � ∆z � H , disk height.

– This requires that v2
A � c2

s, limiting applicability.

– Properly localized mode (i.e. mode decreases as quickly in z or quicker than

density) with discrete eigenmodes (discrete values of kR, γ0); therefore, it

is difficult to construct radially localized packets.



Accretion Disk Structure

• The disk is cold, hence cs � vφ = RΩ. This implies thin disk –

H (disk height) � R (disk radius): cs/vφ ∼ H/R.

• The disk is self-gravitating, Mdisk � Mcentral object, which im-

plies a largely Keplerian rotation profile
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• Radial magnetic fields BR � Bz, Bφ.

• large ionization fraction & astrophysically very long mean free

paths – MHD condition may be valid within much of disk.



The structure of cold accretion disk, where disk height H � R.



Properties of Instability[5]

• equilibrium conditions are given by the following:

– magnetic field: B ' Bφeφ + Bzez.

– velocity: v = RΩ(R)eφ

• Modes are three-dimensional (nonaxisymmetric):

ξ̂ = ξ̃ (R) exp
(

[γ0 − iω] t + ikzz + in0φ
)

Where ξ ≡ dv

dt
is the vector displacement, n0 is the azimuthal wavenumber,

andγ0 > 0 is the growth rate.

• Finite compressibility, ∇ · v̂ 6= 0, also implies a finite plasma pressure p̂ 6= 0.

• Modes are radially localized about corotation point, so that frequency ω = n0Ω.

•
∣

∣k‖
∣

∣ = |(k · B) /B| � |kz|, allowing for large range of wavenumber k and

large range of magnetic field ratios αz that may excite this instability.



The Master Equation[6]
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Where Oeven is some even operator (i.e. diffusion, dissipation) that

smooths out singularities at r2 = 1, 1 + As.



Mode Properties[5]

• Eigenmodes with eigenvalues Ks are found for which Re ξ̃ is even,

Im ξ̃ is odd.

• These modes are excited for relatively large magnetic energy den-

sities, v2
A ∼ c2

s.

• Mode is localized over distances δ0 = ωAs
/ (Ωkzαz) ∼ k‖H/kz �

R.

• Small growth rates given by following:

γ0 ∼ ω
2/3
As

(

DT δ−2
0

)1/3
=
(

DTk2
zΩ

2α2
z/2
)1/3 � ωAs

.

• The width of the transition layers: ∆1 = (DT/ (2kzΩαz))
1/3 �

δ0.
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In the MHD approximation to the mode, singularities appear at

radii R −R0 = ±δ0 (doppler shift ω̄ = ±ωAs
) and at R −R0 =

±δ0
√

1 + As (doppler shift ω = ±ωA).



Transition Regions [5, 9]

• The characteristic function that is used to determine range of

normalized growth rates Γ0 = λ0/δ1:

I (Γ0) =

∫ ∞

−∞
Im Z (x; Γ0) dx ∝ 1

Im ξ(1)

(
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dr
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• Once can introduce a varying operatorOeven(x) such that I (Γ0) 6=
π, allowing for instability range 0 < Γ0 < Γmax

0 .
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• Previous work on the form of function Z across transition region

employed following models[6, 7]:

– simplest:

(

x − iΓ0 −
iν0L

x2 + ε2
a

)

Z (x; Γ0) = 1.

– inclusive:

(

x − iΓ0 −
iν0L

x2 + ε2
a

+ i
d2

dx2

)

Z = 1.

– diffusive: (x − iΓ0) Z + i
d

dx

(

ε + x2

1 + x2

dZ

dx

)

= 1.

– nonlinear: (x − iΓ0) Z + |Z|2 = 1.

These preserve parity across transition (Im Z is even, Re Z is

odd), and lim|x|→∞ Z (x; Γ0) → (x − iΓ0)
−1.

• For linear transition operators, δ1 =
(

DT/
(

δ2
0ωAs

))1/3
.



General Mode Structure
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• Near marginal stability λ0 → 0, the modal spectrum is largely in-

dependent of details of the (parity-preserving) transition model[6].
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Nonlinear Transition Model[7]

• From physical arguments, since ζ̃ (normalized velocity parallel to magnetic

field) → ∞, the transition function Z:

(x − iΓ0) Z +
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Where LN is some length scale.

• In the limit
∣
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1, the diffusion term is negligible:

– transition layer thickness is given by δ1 =
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∣

∣
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∣
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)1/2

.

– The transition equation reduces to: (x̄ − iΓ0) Z + |Z|2 = 1.

– growth rate is given by γ0 ∼ ΩBφ/B
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Quasilinear Fluxes[5, 6, 7, 9]

• Quasilinear angular momentum flux is given by:

Γ
QL
J ' R0

〈〈

ρv̂Rv̂φ −
B̂RB̂φ

4π

〉〉

+ R2
0Ω
〈〈

ρ̂v̂φ

〉〉

Quasilinear particle flux is given by:

Γ
QL
p ≡

〈〈

ρ̂v̂φ

〉〉

Where:

〈〈. . .〉〉 =
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∫ 2π

0
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• From symmetries of the master equation:

– From[6]:
1

2

(

n̂kv̂k∗
R + n̂k∗v̂k

R

)

∝ r
∣

∣vk
R

∣

∣

2
, (odd function)

∗ This implies that particle flux → 0 in quasilinear approximation.

∗ These modes fall into the class of “particle mixing” modes[10].

– The angular momentum flux is given by[7, 5, 6]:

ΓQL,k
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(

∫ ∞
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∗ An estimation of diffusion coefficient requires the saturation of displace-

ment
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∼ δ0, with following diffusion coefficients DJ :

∗ DJ ∼ γ0

(

B2
φ

BBz

ωAs

kzΩ

)2

for Bz � Bφ.

∗ DJ ∼
(

DT

(kzH)2

)1/3

(csH)2/3 for Bz ∼ Bφ.



Quasilinear Heat Accumulation

• Rate of heat accumulation from single mode of wavenumber k:

Sk '
〈〈

ρ̂c2

s∇ · v̂ − 4

3
(Ω + Ω′R)

B̂RB̂φ

4π

〉〉

k
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• For Bz ∼ Bφ:

|Sk| ∼
(

DT

csH

)1/3

(kzH)−4/3 pΩ
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