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The Weibel instability[1], purely electromagnetic in nature, has been used to explain the strong magnetic fields believed to occur in

the highly relativistic shocks of gamma ray burst afterglows[2]. We will go through a quick derivation of the important properties of

the relativistic Weibel instability in the simplest case (no magnetic fields, no electric fields, no equilibrium currents), as well as give

a physical description for the instability. The results will then be connected through numerical simulations and order of magnitude

estimates of the highly collisionless GRB afterglow. Finally, we end with a “laundry list” of what I believe are the most significant

issues in describing such a shock, which perhaps cannot be described by laminar flows or other such streamlines.



The Physical Systems Being Described

• Both the gamma-ray burst afterglow shock and the pulsar winds are describable by a relativistic to highly
relativistic collisionless plasma with (assumed) small seed magnetic fields.

• Shown below are calculated results of the expected gamma factors of the shocks in several GRBs, taken
from [3]. Here γ factors of corresponding material range from a few to a few hundred.
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Collisionless Approximation Valid

The relativistic plasma is also collisionless if we consider two-body collisions that result in the

transfer of momentum or of energy.

• If we consider simply ion-ion collisions of the shock with the incoming preshock ISM plasma,

with γshock, then the timescale associated with collisional processes (i.e., magnetic diffusion

from electrical resistivity, thermal diffusion and equilibration of the particle density function

from collisional conductivity, momentum diffusion through viscosity) with the plasma incoming

in the frame of the shock:

τcoll ' 1/νcoll

• For relativistic particles, the kinetic energy of particles E = mc2γshock = e2/r. The cross

section σ ∼ r2. The density of the shock is of order nISMγshock.

• One can show that νcoll ∼ nσc '
(

e2/mc2
)2

γshocknISMc.

• For values of typical ISM, nISM = 106 m−3 and γshock = 100, and taking the most conservative

estimate (fastest collision rate):

τcoll ' 4 × 1012 s

Much larger than associated lifetimes of afterglows (days, weeks, and sometimes months, but

not thousands of years).



Justifications for the Weibel Instability

• It is a mechanism for the generation of (possibly) strong magnetic fields within the shock, on

the order of up to a significant fraction of the total kinetic energy within the shock. Letting

εB = B2/ (8πeth), the following groups have calculated from the afterglow spectra and the

light curves the inverse plasma β:

– εB ∼ 0.1[4, 5].

– εB ∼ 10−2[6].

– εB ' 10−5[7, 8].

• The magnetic field strength due to Lorentz boosting of the ISM magnetic field, Bshock ∼

γshockBISM, is many orders of magnitude too small to explain the spectra.

• The size of the progenitor maybe ∼ 105 m. Afterglows appear at ∼ 1012 m, so flux freezing

is insufficient to explain the magnetic fields as well; furthermore, the magnetized wind is also

incapable of providing the large magnetic fields as well.

• Other effects: the acceleration of particles in the preshock region, due to magnetic field-particle

interactions[9, 10, 11].

• Perhaps a characteristic scattering length given by the wavelength of the fastest-growing modes

in this “tangled” magnetized plasma – this ` much smaller than mean free path of particles,

so collisions via pitch-angle scattering[2] result in the use(?) of MHD approximation and the

(!) Rankine-Hugoniot conditions.



The Weibel Instability in a Nutshell

• The Weibel instability is a purely electromagnetic (i.e., E = −c−1∂A/∂t, where A is the

vector potential) mode that converts an anisotropic particle distribution into magnetic energy.

• This mode can arise in the absence of equilibrium currents J, in the absence of equilibrium

electric and magnetic fields – as far as kinetic instabilities go, it is as “simple” as the expressions

for Landau damping, electrostatic wave-particle resonances.

• Was first introduced by E. Weibel[1] in the context of then-weird instabilities seen in early

plasma experiments.

• Has been applied to describe the anomalous resistivity in Earth’s magnetosphere to efficiently

drive magnetic reconnection (see, e.g., [12] and references therein).

• Weibel and other electromagnetic instabilities are dynamically important in intense laser-

plasma interactions (see, e.g., [13] for some references).

• The general results for a nonisotropic, zero-current relativistic equilibrium were first explored

by Yoon and Davidson[14] in describing the general stability properties.

• The maximum growth rate in the relativistic limit: γmax ∼ γ−1/2ωp → λDe/c, where ω2
p =

4πe2/m is the plasma frequency and λDe = 4πe2c2/E is the Debye length, and with wavenum-

ber kmax ∼ γ−1ωp/c → λ−1
De.



•

A perturbation in the y axis creates magnetic fields in the z direction, which amplify the per-

turbation (and quench the anisotropy). This is also referred to as the filamentation instability,

due to the establishment of current filaments in the nonlinear stage of this instability.



The Relativistic Weibel Instability in the Linear Regime

• Assume purely electromagnetic perturbations, so the vector potential is given by:

Â = Ã exp (ik · x − iωt)

So that electric and magnetic fields are given by:

Ê =
iω

c
Â

B̂ = ik × Â

• Formally, for each group of particles with mass mj, charge Zj there is a total distribution

function – sum of perturbed and equilibrium distributions:

fj = f0j + f̂j

And the collisionless Boltzmann equation for relativistic particle distributions:

−i (ω − k · x) f̂j + iZje
(

−
ω

c
Â + v ×

(

k × Â
))

·
∂f0j

∂p
= 0

• Equations are closed by using Lorentz gauge k · Â = 0 with this result:

(

k2
− ω2/c2

)

Â =
4π

c
J =

4π

c

∑

j

Zje

∫

vf̂j d3v



• Yoon and Davidson[14] used a simplistic particle distribution to find an analytic dispersion

relation for the Weibel instability, as well as its stability criterion.

F
(

p2
⊥
, pz

)

=
1

2πp⊥
δ (p⊥ − p̂⊥) ×

1

2p̂z
H

(

p̂2
z − p2

z

)

What they find is the following important characteristic of the distribution – the associated γ̂,

β̂z, and β̂⊥:

γ̂ =

√

1 +
p̂2
⊥

+ p̂2
z

m2c2

β̂z =
p̂z

√

p̂2
z + m2c2

β̂⊥ =
p̂⊥

√

p̂2
⊥

+ m2c2

• They find that for a relativistic plasma γ > 2, the maximum growth rate is something that

looks like c/λDe, and hence the dominant wavenumber kmax ∼ λ−1
De.
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Visual depiction of stable, unstable, and un-

physical regimes for the relativistic Weibel

instability with an initial analytic momen-

tum distribution.

Plot of the growth rate for Weibel instability

as a function of wavenumber k, for different

ratios of β̂2
⊥
/β̂2

z . Here, we have that γ̂ = 10.



Weibel Instability is NOT the Two-Stream Instability

The two-stream instability is characterized by a 3D system – one

dimension of space (x), one dimension of velocity vx, and one di-

mension of time. Therefore, since all currents J = Jx(x)ex, this

system is dimensionally constrained to be purely electrostatic.

Shown on the left is the time evolution of the phase-space plot

of the two interacting streams – horizontal is position, vertical

is velocity, with the system being periodic in x.



General Results of the Weibel Instability from Numer-

ical Simulations

• These models are typically PIC (particle in cell) codes with limited dimensionality – 2 spatial

dimensions in space and velocity, to simulate at a minimum the evolution and existence of a

magnetic field – in order to conserve computing power.

• Numerical studies of the Weibel instability in plasmas is usually done with electron-positron

systems or systems in which the electrons move in a stationary ionic background (see, e.g.,

[13, 15]) that results in the saturation of the magnetic field, electron energy densities, etc. on

time scales of order ωpe in the nonrelativistic or mildly relativistic limit γ ' 1.

– The large, saturated electric fields in the limit of electron saturation is expected to lead

to the breakdown of ion stationarity – one must take into account ion dynamics on ion

gyroperiods (calculated at roughly the electron saturation magnetic fields)[16].

– In light of this important result, the model describing the GRB afterglow in terms of the

electron and magnetic energy densities[17] separately may be flawed – in that these two

quantities may be rather closely related.

• Magnetic fields saturate, depending on the nature of the counterstreaming (usually electron)

beams, from anywhere near equipartition relative to electron energies, or somewhat below this



value – a problem that is still not well understood, and believed to be very

complicated even in this limited regime .

– Even in regime where the electrons saturate (time scales smaller than ion gyroperiod), there

exists a variety of, for example, particle-wave resonance effects (artifacts being the presence

of velocity singularities in the particle distributions) and the excitation of electrostatic

modes[18, 16], among other effects.

• Accelerations of particles cannot easily be described by Fermi acceleration across the shock (or

the “active region” over which these instabilities operate) [10, 9].

• In all cases, at least in the electron saturation regime, kinetic numerical

analysis shows the development of nonuniform particle distributions – not

the simple thermalization of particle distributions.

• Some full three-dimensional momentum and space PIC simulations of mildly relativistic coun-

terstreams (Γ = 5 − 10) [10, 9] have just been started, but the results are not yet as compre-

hensively assayed as the simpler 2D models.



Characteristic filamentation structure

of the magnetic field (and consequently,

of the current and electron velocities) in

the Weibel instability. In this problem,

one has both mildly relativistic coun-

terstreaming electron and positron plas-

mas, such as might be seen in pulsar

winds[15].



On the far left is shown the saturation of field quantities for the e+e− plasma[15]; in the middle is
shown the saturation of an electron counterstreaming plasma’s magnetic field energy density[16];
and on the right is showing the semisaturation of the magnetic field energy density (due to electron
motion saturation) in the full 3 + 3 dimensional model of electron-ion plasma [11]. The first two
models are truncated dimensionally in space and momentum. None of these models, however, takes
into account the ion dynamics as well.



hfill

Highly nonthermal distributions for the positron-electron plasma (on left) and for the 3D electron

plasma on the right. This is explained as particle acceleration in the plasma preshock[10] for the

3D plasma.



Additional Unusual Complexities Associated With the

Weibel Instability

On left is shown the singularities arising in the electron velocity distributions due to the Weibel

instability – a wave-particle resonance effect. On the right, there is a characteristic frequency of

oscillation as seen from a Fourier time spectrum map of the electric and magnetic fields.



Main Issues to be Resolved

• In the description of a “shock,” no numerical model has imposed boundary conditions on the

flow of momentum (both particle and electromagnetic), energy, and particles – very important

if we are to describe this structure as a “shock.”

• No numerical model of the Weibel instability has yet described a situation where the counter-

stream is ultrarelativistic; no one has yet done a full model taking into account the evolution

of the ion particle distribution.

• The descriptions of a “turbulent” (or random) collection of magnetic fields in the absence of

a strong background does not appear to make sense – how does one support an inherently

random, non-force-free configuration with currents?

• The thermally ultrarelativistic plasma with ultrarelativistic counterstream seems an inherently

less complicated problem – the effects of particle mass become irrelevant.

– At sufficiently high particle energies, one may even ignore the effects of electromagnetic

fields – one where L < λDe, where L is the length scale of the problem and λ2
De = 4πe2n/Ē,

where Ē is the average particle energy.
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