# The Magnetoviscous Instability With General Viscosity

angular momentum outflow

by Tanim Islam Astronomy Department Symposium University of Virginia, February 2005

#### Phenomenological Model of Rotating Astrophysical Disks

- transfer of angular momentum (spin) outwards
- transfer of matter inwards
- Process is mediated by a "phenomenological" viscosity, not the perfectly-understood viscosity arising from particle-particle collisions



#### α Viscosity Paradigm

Shakura and Sunyaev [1] believed diffusion was enhanced by *hydrodynamic turbulence* – the size of the cells is **H** (disk thickness); the sound crossing speed is **c**<sub>s</sub> (sound speed)

 $\eta_{\nu} = \alpha c_s H \gg c_s^2 / \nu_{ii}$ 

dimensionless parameter

ion-ion collision rate

order-of-magnitude estimate of the viscos-



 $\alpha$ 

 $\mathcal{V}_{ii}$ 

ity, resulting in accretion timescales of order  $10^{10} - 10^{12}$  years

#### Example: Diffusion Equation For Accretion



 $\Sigma(R,t) =$  Surface mass density

 $v_R =$  inflow accretion velocity

Above diffusion equation is applied to flows within thin accretion disks, but paradigm is universal in disk accretion models.

 $\eta_{v}$  is a phenomenological  $\alpha$  viscosity.

#### The Magnetorotational Instability

First discovered by Velikhov [2] and Chandrasekhar
 [3], and used as an explanation for rigid-body
 (constant Ω) rotation in stars.

Magnetized disks in which decreasing outwards
 angular velocity Ω rather than angular momentum
 ΩR<sup>2</sup> (stability criterion for hydrodynamic disks)
 destabilize the disk.

Instability grows at the rate of  $\Omega$  at wavelengths much **smaller** than the disk height ("turbulence" within the disk arising from magnetic fields).

### **Astrophysical Application**

- Balbus and Hawley [4] showed that the MRI could be applied under much more general and universal conditions (namely that  $\Omega$  decreases outward radially) and is a global instability (important wherever in the disk that the above condition is met).
- First to apply the use of the MRI in explaining magnetized turbulence, hence enhanced viscosity, within accretion disks.
- From 2D and 3D simulations, showed that magnetic fields from even a weak level saturate at pressures comparable to the gas pressure.
  - Numerically simulated  $\alpha \sim 1$  (or not much smaller).

Magnetic Field Saturation [5]





 $\alpha \sim 10^{-2}$  in above simulations

## Nonlinear Simulation of MRI



### Schematic Model of MRI



- Points on a magnetic field line are forced to corotate (same  $\Omega$ ).
- The points further out from the equilibrium tend to accelerate outward, while points inside accelerate inwards.
- QUENCHED at small enough wavelengths due to the "springiness" of magnetic tension.

### Magnetoviscous Instability (MVI)

- Weak magnetic fields, so no magnetic forces as in MRI.
   Strong enough magnetic field (ν<sub>ii</sub> < Ω<sub>ci</sub>) to anisotropize the viscosity along the magnetic field line [7].
- Saturation of mode at wavelengths  $\lambda \sim (\eta_v/\Omega)^{1/2}$ , much longer than MRI saturation wavelength  $\lambda > v_A/\Omega$ .
- Physical differences between MRI and MVI.
  - MRI: fluid tether through magnetic force.
  - MVI: fluid tether through anisotropic viscous force, which itself lies along magnetic field lines.

#### Justification for Study of the MVI

- Certain classes of rotating astrophysical objects are unstable to these modes – those that are characterized by very dilute plasmas and relatively weak magnetic fields.
  - protogalactic disks amplification of weak magnetic fields.
  - RIAFs very hot (ion temperatures ~ 10<sup>12</sup> K), dilute, optically thin and nonradiative plasma around compact objects.
- May allow for growth of magnetic fields in ISM to thermal strengths, as well as provide a mechanism for turbulent α viscosity in RIAFs.

#### Astrophysical Objects Unstable to the MVI



#### Equilibrium Disk

central mass source

 $v_{A}^{2} << c^{2}$  (relatively weak magnetic fields)



#### **Unstable Mode Analysis**

- $axisymmetric instabilities, \frac{\delta a \propto \exp(ik_z z + ik_R R + \Gamma t)}{\delta a \propto \exp(ik_z z + ik_R R + \Gamma t)}$ 
  - where  $\delta a$  is perturbed quantity,  $\Gamma$  is growth rate, and  $k_R$  and  $k_z$  are radial and vertical wavenumbers.
- Boussinesq approximation incompressible instabilities

WKB (wave) approximation, examining wavelengths < H (k H > 1).

Useful normalizations:

 $\mathbf{k} = \mathbf{k}H = \mathbf{k}c_s/\Omega$ 

 $\Gamma = \Gamma / \Omega$ 

 $\hat{\eta}_{\nu} = \eta_{\nu} / \left( c_s H \right) = \eta_{\nu} \Omega / c_s^2$ 

#### **Dispersion Relation**



#### The MVI as Modification of the MRI



### Dispersion Relation of the MVI in More Appropriate Units



#### **Full Axisymmetric Dispersion of MVI**





### Oscillatory (Imaginary Part) of Growth Rate



#### Validity of the Boussinesq Approximation



### Kinetic Analysis Yields Results Consistent With Fluid Approach



### The MRI and MVI Are Manifestations of Changed Stability Criteria

 Instability Conditions

 nonmagnetized
 magnetized

 angular momentum (Ω²R)
 angular velocity (Ω)

 decreases radially
 decreases radially

 outwards
 outward

entropy density (heat content) decreases upward or radially outward. temperature **T** decreases upward or radially outward – outer or upper regions cooler.

### Nonlinear Thermal Instability In Magnetized Plasma



magnetic field lines

temperature

Taken from http://www.astro.princeton.edu/~iparrish

#### **Issues With Analytic MVI**

- Examine the effects of relatively large anisotropic magnetized electron thermal conductivity, as begun in [9].
- Careful kinetic study of the extremely dilute plasma ( $v_{ii}/\Omega \rightarrow$ 
  - 0) limit.
    - "knee" in the dispersion relation result of effective wave-particle finite diffusion process?
    - Comparison to fluid approximation.
    - If "knee" exists, determine under which conditions the WKB approximation holds.
- Long-wavelength approximations in dilute plasma limit due to saturation of MVI with WKB approximation in dilute plasma limit.

#### **Issues With Numerical MVI**

Numerical difficulty with tracking a viscosity tied to a field parameter (magnetic field) that can vary on shortest grid lengths.

- Preliminary numerical simulations of magnetothermal instability (MTI) demonstrate surmountability.
- Form of the power spectrum in MVI dominated by short or long wavelengths?
  - MRI long wavelengths, magnetic dissipative scale > viscous dissipative scale.
  - MVI magnetic dissipative scale < viscous dissipative scale, so short(?) wavelengths as in Schekochihin et. al. [11].

#### References

- [1] N. Shakura and R. Sunyaev, A&A **24**, 337-355 (1973).
- [2] E. Velikhov, Sov. Phys. JETP 36, 995 (1959).
- [3] S. Chandrasekhar, Proc. Nat. Acad. Sci. USA 46, 53 (1960).
- [4] S. Balbus and J. Hawley, Ap. J. **376**, 214 (1991).
- [5] S. Balbus et. al., Ap. J. 467, 76 (1996); S. Balbus and J. Hawley, Rev. Mod. Phys. 70, 1 (1998).
- [6] J. Hawley et. al., Ap. J. **464**, 690 (1996).
- S. I. Braginskii, Rev. of Plasma Physics Vol. 1 (New York: Cons. Bureau, 1965); J. Huba, NRL Plasma Formulary (Washington DC: NRL, 2002).
- [8] E. Quataert et. al., Ap. J. **577**, 524 (2002).
- [9] S. Balbus, Ap. J., **562**, 909 (2001).
- [10] Hawley et. al., Ap. J. **440**, 742 (1995).
- [11] Schekochihin et. al., Ap. J. in press (astro-ph/03012046 v2).