
Hall Astrophysics in Dusty Plasmas

• In the limit of very low plasma density and/or “fixed” ion motion

(i.e. motion of ions unaffected by electromagnetic field), Hall

physics may play important role, esp. when ion gyroradius is on

order of or larger than scale of the problem.

• Effects of low density may imply that Hall plasma effects, such

as magnetic rotation (as seen in whistler waves) and magnetic

convection (through whistler drift modes) through Hall electric

jet may be orders of magnitude faster than magnetic diffusion

and fluid convection, the only phenomena for magnetic trans-

port seen in Hall magnetohydrodynamics. Such phenomena have

been observed, for example, in pulsed plasmas and plasma open-

ing switches.



• Hall physics may also explain the much smaller magnetic fields

created through dynamo process – processes which may result

in outgoing Hall electric jets in some stellar configurations.

• All results shown here are done for the simple case of electron-

ion Hall plasmas. To express the problem in terms of dusty Hall

plasmas, we note the following justification for the use of Hall

physics:1

– Dust particles, observed to be prevalent in stellar disks, is

not magnetized due to dust-gas friction, but electrons and

ions remain magnetized.

– All electron-ion Hall physics can be substituted with dusty

plasma by making following: n → nd, e → Zde, η → ηi,

V → Vd, ηi =
νigMic

2

4πe2ni
× 1

(Zdnd/ni)2
.

∗ νig is ion-gas collision frequency.

∗ Mi is ion mass.

∗ nd, Zd, Vd are dust number densities, charges, and veloc-

ities.

– Dust inertial scale, for typical charge of dust Zd = −1 and

calculated densities of dust nd ∼ 10−5cm−3, are of order

D ∼ 10 AU, on scale of dimensions of problem.

1from L. Rudakov, “Dynamo and Electrical Jet in Hall Plasmas, Application to Astrophysics”,
http://arXiv.org/abs/astro-ph/0106003



Justification

Possible role of Hall physics in jets about young stellar objects

Hubble Space Telescope shot of
young stellar object HH30, taken
from NASA archive.

Studies of the movement of sub-
structure within the jets (calcu-
lated to have width of 50 AU),
show a velocity five times larger
than bulk velocity of jet (see M.
Pestalozzi, “The Outflow-Disk In-
teraction in Young Stellar Objects,”
http://arXiv:astro-ph/0007156

(2000)), as observed using Doppler
shift measurements in radio (see
Lada, C.J., and Fich, M., ApJ 459,
638 (1996) for doppler measurements
in radio of HH30).

Measurements of the polarization of the magnetic field in the jets of Herbig Haro objects GM
Aur and DG Tau (see Tamura M., Hough G.H., Greaves J.S., Morino J.-I., Chrisostomou
A., Holland W.S., and Momose M., ApJ 525, 832 (1999)) imply toroidal magnetic field,
which may be due to presence of nonlinear Whistler drift modes, propagating
as Burgers shock-wave.



HALL DYNAMIC EQUATIONS
• Considering Hall plasma, in which electrons frozen into magnetic field and ions un-

frozen in the liquid.
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• Aassume that ions move with velocity rΩ(r, z)eφ. Also assume axisymmetric magnetic
field given by B = Beφ +∇× (Aeφ) so we have following:
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∂Ã

∂t̃
= η̃

(
1

r̃

∂

∂r̃

(
r̃
∂Ã
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• Normalizations are given by following: r̃ = rωpi/c, z̃ = zωpi/c, t̃ = tωci, Ω̃ = Ω/ωci,
B̃ = B/B0, Ã = A/A0 = A/B0 × (ωpi/c), η̃ = νei/ωce, ñ = n/n0, ω2

pi = 4πn0e
2/mi,

ω2
pe = 4πn0e

2/me, ωci = eB0/mic, ωce = eB0/mec.

• ignore gradients in plasma resistivity η; assume jet-like solutions A ≡ A(r, z−
ut), B ≡ B(r, z − ut); only radial density dependence n ≡ n(r). To get Grad-
Shafranov-like solution:
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rB(r, z − ut) = H(Ψ)− u

∫ r

0

r′n (r′) dr′ ≡ poloidal current

rA(r, z − ut) = Ψ(r, z) ≡ poloidal magnetic flux

• Results can be derived by force balance equation in frame comoving with velocity u,
where E′ = 0, with bulk ion motion Ω.



HALL DYNAMO

• Consider simple model of Hall dynamo, with Hall plasma disk

thickness d ¿ R, (R being radius of disk), such that η À d/R

– allows us to ignore poloidal magnetic rotation δA ¿ B.

• Simplest geometry:

1. rigidly rotating disk Ω = constant sitting within motionless

conducting Hall plasma (or rather length scale of Ω gradient

is δ).

2. Initial Bz = B0 field threads Hall plasma conductor.

3. B = br, A = ar through conductor.

• Allows for following:
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Which yields, since η → 0 (large magnetic Reynold’s number

Rm = vAd/η, vA = B0/
√

4πnMi):

Bφ ≈ B0 (RΩ/vA)1/2 (R/ωpic)
1/2

Which is much smaller than MHD case of Bφ ≈ B0RΩd/η →∞
as η → 0 (if we neglect Hall term 2b∂b/∂z).



1. The first case denotes one where we can ignore the Hall term;

in this instance, within the disk, d2B/dz2 = 0 (i.e. the MHD

dynamo).

2. The second case is when the quantity ΩBz < 0, in which we

have a steady-state Burgers-like shock (i.e. profile that goes

as tanh z/`), which has a toroidal amplitude at the upper and

lower surfaces of Bz (RΩ/vA)1/2 × (Rωpi/c)
1/2. The velocity of

this shock front, before the equilibration shown in the cartoon, is

u = vA (c/vA × Ω/ωpi)
1/2 for each limb of the shock front. The

thickness of the front is η/vA.

3. In a steady state, power dissipates through Joule heating within

the central current layer, but the total resulting power is inde-

pendent of resistivity. This power is equal to B2
r along the surface

and cBθ
4πenR (Hall velocity) times B2

θ/4π (due to equal energy flux

contributions from both sides).

4. The third case, occurs when ΩBz > 0. Here, toroidal magnetic

flux flows outwards and we have a Burgers-like shock, with the

aforementioned velocities and shock front thickness, propagat-

ing out of the disk into an (assumed) Hall plasma

column.

These results were taken from L. Rudakov, “Dynamo and Electrical

Jet in Hall Plasmas, Application to Astrophysics”,

http://arXiv.org/abs/astro-ph/0106003.



Electrical Jets in Hall Plasma

• Here, we assume following jet-like solutions A ≡ A(r, z − ut),

B ≡ B(r, z − ut), or show how such solutions can arise, that

propagate through a Hall plasma column.

• We acquire solutions that are in some cases analogous to whistler

drift modes (toroidal magnetic convection into bulk unmagne-

tized plasma)

whistler modes – poloidal magnetic field rotation, or in other

words possessing a three-component magnetic field.

Some combination of the two linear Hall phenomena

• All results represented in Hall normalized manner, with constant

density within a plasma column, vacuum outside plasma column.



Electric Jet I: Resistive Nonlinear Shock
Solution
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Plot of the toroidal magnetic field profile in z within the plasma

column (or specifically, the toroidal magnetic field is given by

B(r, z, t) = rb(r, z, t)). We naturally expect that the “preshock” re-

gion has zero toroidal magnetic field. Here, in normalized units, u =

100.0, b(−∞) → −100.0, and the front thickness is δ = 0.02c/ωpi.

Here, we have large η and A ¿ B so that for r < R, B(z, r, t) =
1
2rb0

(
tanh

(
b0(z−b0t)

2η

)
− 1

)
, and for r > R, B(z, r, t) = 0.



Electric Jet I: Resistive Nonlinear Shock
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Poloidal current lines within the Burgers-like nonlinear solution.

Here, we see that a z current sheet develops on the Hall plasma

column, that distributes current back into the (attached) accretion

disk.



For our jet-like solution (A,B) ≡ (A,B)(r) cos k(z−ut) with η → 0,

solution given by following:

Ψ(r, z − ut) = rA(r, z − ut) ={
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Simulation has α = 1.0, k = 1.0, and u = 100.0, with κ chosen to

be first zero of J1 at plasma edge, κ =
√

k2 + (3.873171/R)2.



Conclusions and Further Research

• Determine a larger variety of solutions, especially

to the soliton-like solution and Grad-Shafranov like

solution, in the Hall electrical jet, as well as more un-

stable solutions to determine in what manner these

proposed Hall magnetic fields are created.

• In connecting electron-ion Hall plasma results to that

of the dusty plasma, we need to take into account the

fact that dust has a specific charge and mass distri-

bution. One needs to develop this “kinetic” theory

with dust to get better understanding.

• Analytic and simple numerical results may bench-

mark the performance of 3D numerical Hall simu-

lation codes; likewise, Hall numerical simulations of

astrophysical phenomena may suggest further direc-

tions of study.

• There may be other astrophysical phenomena in which,

numerically and analytically, the Hall physics treat-

ment may be more valid than standard MHD. Stellar

accretion disks, analyzed here, is one. Dynamic in-

stabilities in large interstellar molecular clouds may

be another.



Cartoon depicting the simplified Hall dynamo with finite (but small)

resistivity. In the figure, we see that a rigidly rotating disk of

thickness d ¿ R is rotating with frequency Ω, within a motionless

plasma. The length scale for the rotational frequency gradient

is δ, depicted on the graph to the right. The space between the

“conductors” is a gap to depict more clearly the rotation differential.

The entire system is originally threaded with a Bz field. Note

that the rotation differential causes opposite signs of Bθ to appear,

since from greater z, Ω changes from 0, whereas moving out of the

disk through the bottom, Ω reverts to zero again.

In Hall limit, Bθ ≈ B0 (RΩ/vA)1/2 × (Rωpi/c)
1/2, where

vA = B0/
√

4πnMi.



Depiction of toroidal magnetic field convection for three important

cases, where we consider for simplicity a disk within which dΩ/dz =

0. EH denotes the value of the toroidal Hall electric field, where

applicable. Green lines denote the toroidal magnetic flux flow, where

applicable.



Electric Jet II: Soliton-Like Solution
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Plot of a “soliton-like” solution for b (toroidal magnetic field) with

a given specified perturbative a (toroidal vector potential). In

normalized Hall units, a(z) = e−z2/3 sin(5z), u = 2.7356, and

limb→−∞ b(z) = −2.3678, and η = 1. “Shock-like” solutions, here

denoting solutions in which the magnetic field approaches some lim-

iting value at ±∞, are seemingly allowed only when a ∼ b ∼ η, and

the specified a is localized.



Electric Jet III: Grad-Shafranov-Like
Solution
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Poloidal magnetic flux Ψ (and hence, poloidal magnetic field lines)

for the Grad-Shafranov-like solution. Note that since the poloidal

flux within the vacuum is constant, no poloidal magnetic fields exist

within the vacuum. Note that the discontinuity in Bz results in φ

current sheet along the Hall column surface.


