Important Factors to Note

- 1 AU \equiv distance of the Earth to the sun $\approx 1.5 \times 10^8$ km. This is the scale of distances within the solar system.
- light-year ≡ the distance light travels within one year ≡ 9.5 × 10¹² km. Stars in the neighborhood of the the sun are separated from each other over these distances.
- 1 parsec ≡ the distance at which an object will have a *parallax* of 1 arc-second (1/3600th of a degree) when Earth moves from one side to the other of its orbit ≡ 3.26 light-years.

- 1 $L_{\odot} \equiv$ the total power output by the sun $\equiv 4 \times 10^{26}$ Watts.
- Size of the Milky Way galaxy $\approx 25 \text{ kpc} \approx 8 \times 10^{17} \text{ km}.$
- Radius of the sun $R_{\odot} \approx 7 \times 10^5$ km, mass of the sun $M_{\odot} \approx 2 \times 10^{30}$ kg.
- Radius of the earth $R_{\rm t} \approx 6000$, mass of earth $M_{\rm t} \approx 5 \times 10^{24}$ kg.
- one galactic year \equiv the time it takes for the sun to move about the galaxy center ≈ 220 million years.
- 1 Gyr \equiv 1 billion years (1 "Giga year").

Densities

- Number Density has units of 1/volume $\equiv L^{-3}$, where L denotes a length. It has symbol ρ .
- Mass Density has units of mass/volume $\equiv ML^{-3}$, where M denotes a mass. It also has symbol ρ .
- Areal Number Density has units of $1/\text{area} \equiv L^{-2}$. It has symbol σ .
- Areal Mass Density has units of mass/area $\equiv ML^{-2}$. It has symbol σ .

Note: Except where noted as such, I will continue to use "density" for *number density* and "areal density" for *areal number density*.

One can also calculate the average separation between objects from a number density by dimensional analysis:

- In three dimensions, the average separation $\ell = \rho^{-1/3}$.
- In two dimensions, the average separation $\ell = \sigma^{-1/2}$.