Homework #7

- 1. Consider the various types of Kardashev level civilizations that might currently exist or at least, if we survive into the far future, we will probably end up as one!
 - (a) The sun has a luminosity of 10^{26} Watts. A Kardashev I civilization uses up all the energy falling on the planet's surface. Consider Earth to be a circular "detector" with radius $R_{\rm c} = 1.2 \times 10^6$ m, so $A_{\rm detect} = \pi R_{\rm c}^2$. The earth is situated 1 AU, or $D = 1.5 \times 10^{11}$ meters from the sun. Determine the energy output of a Kardashev I civilization at Earth orbit.
 - (b) A Kardashev III civilization will harness all the energy within a galaxy. Suppose, on average, the luminosity of stars are $L_{\star} = 0.1 L_{\odot}$ (the average luminosity of stars is 10% the solar luminosity), and there are 10^{11} stars in our galaxy. What is the energy output of a Kardashev III civilization?
 - (c) Supposing the per-capita usage of energy is 1 gigawatt (this takes into account all types of industry and transportation). Based on this alone, how many "people" could a Kardashev III civilization support (on energy alone)?
 - (d) Instead of supposing that the energy for a Kardashev III civilization comes from stars, suppose it comes from gravitational collapse.
 - i. From the equation $E \approx Mc^2$, estimate the energy available to a Kardashev III civilization (from the collapse of all the matter into a black hole); take $M = 10^{11} M_{\odot} = 2 \times 10^{41} \text{ kg}$ and $c = 3 \times 10^8 \text{ m/s}$.
 - ii. From your estimate of power consumption of a Kardashev III civilization, estimate the lifetime of such a civilization in years. How does this compare to the lifetime of the sun? This is approximately equal to the lifetime of the dimmest stars – but the energy usage is utterly inconceivable.
- 2. The upper limits on information processing with atoms as specific elements is limited by light speed as well as the size of atoms although I put the thermodynamic noise as an upper limit, it is really the smaller of the two.
 - (a) Given the speed of light and the fact that atoms are separated by a distance of 10^{-10} meters, what is the fastest possible "switch" rate of atom-based information elements?
 - (b) The average energy per calculation of an atomic-sized element is roughly the energy that can be placed within an atom or molecule. This is roughly 2×10^{-20} Joules. How many Joules per second are used up per atom each second, given the number of calculations to be done per second this is the power per atom.
 - (c) Now suppose the atoms are spread over a surface. There are 10^{20} atoms per square meter. Given the power per atom, what is the power per square meter of computing surface? This corresponds to a surface temperature of 3 million Kelvins!