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Practice Problems #2, ASTR 211, Fall 2004
Answers are denoted in red.

1. The earth is aligned at an angle of 23ffi relative to the normal to the ecliptic. The period of Earth’s
precession is 26,000 years. Assume the North Star is at the North celestial pole (δ = 90ffi) at the
current epoch. What is the declination of Polaris relative to the old North celestial pole 6,500 years
ago? A diagram describing this problem is shown below:

Figure 1: Diagram depicting the vector pointing at the NCP at
the current epoch, and at an epoch t = 6500 years ago. The
angle δ is the angle between the older NCP and the current
NCP, or equivalently the angle between the current pole star
(assumed to lie at the current NCP) and the old NCP. It is
assumed that the heavens are “fixed” relative to the precession
of Earth’s rotation axis. Axes fixed with respect to the heavens
are also shown.

At current coordinates, the unit vector nNCP has components fixed relative to the stars given by:

nNCP = (sin χ, 0, cosχ)

Where χ = 23ffi is the inclination of the celestial pole relative to the normal to the ecliptic. However,
the precession of the north celestial pole implies that:

n(t) = (sin χ cos Ωt, sin χ sin Ωt, cos χ)

The period of a precession is P = 26, 000 yrs. Therefore the frequency of the precession Ω = 2π/P .
I have given the time t = 6500 years, allowing one to calculate out Ωt. The angle between the two
vectors δ is given by:

cos δ = n(t) · nNCP = cos2 χ + sin2 χ cos Ωt

The declination is the angle ` = 90 − δ.

2. Barnard’s Star has some of the largest proper motions of any stellar object in the sky. Its radial
velocity vr = 140 km s−1 towards Earth, while its proper motion across the sky is 10.3′′ (10.3
arcseconds) yr−1. It is located 6.7 light-years from the sun.
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Figure 2: Diagram
depicting the veloc-
ity and motion (po-
sition) of Barnard’s
star through time.

(a) What is its transverse velocity vt? What is the total speed vtot of Barnard’s star? In one year,
Barnard’s star moves 10.3”. However, the star is located 6.7 ly = 2.1 pc away. The transverse
speed vt = 10.3 ∗ 2.1 = 21 AU yr−1 = 1.0 × 107 cm s−1.

(b) What is the angle θ that Barnard’s velocity vector vtot make with our line of sight? The angle
θ is defined trigonometrically to be tan θ = vt/vr = 0.719, therefore θ = 0.62 radians = 36ffi.

(c) From the above diagram, what is the closest distance Dmin that Barnard’s star will approach
the earth? How many years in the future t will this approach occur? From the above diagram,
Dmin = D sin θ = 3.9 light-years. since L = D cos θ, this will occur at a time:

t =
D cos θ
√

v2
r + v2

t

=
Dvr

v2
r + v2

t

= 3.0 × 1011 s = 9.5 × 103 yr

Therefore, around AD 11,500.

3. The Greeks observed that the time t1 from new moon to first quarter is 15 minutes shorter than t2,
the time from first quarter to full moon. Assume the moon has a circular orbit with radius 3 × 105

km and it takes T = 28 days to undergo one revolution around Earth.
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Figure 3: Geometry of the problem used to determine
the distance to the sun, as well as the size of the
sun, first proposed by the ancient Greek astronomer
Aristarchus. The box denotes a right angle.

(a) Given the circumference of the above orbit, what is the speed v of the moon’s revolution about
Earth? The velocity of the moon in its circular orbit:

v =
2πr

P
=

2π × (3 × 1010 s)

86400 × 28 s
= 1.24 × 104 cm s−1

(b) Use the above system of equations in this figure to solve for t1 and t2. Solving the above system
of equations given the velocity gives the following result:

t1 = 7 days − 7.5 min = 6.0435 × 105 s

t2 = 7 days + 7.5 min = 6.0535 × 105 s

Here, due to the smallness of the angle θ, it is important to keep the time measurement to a
high degree of accuracy!

(c) What is the angle θ in the above diagram (hint: calculate out the time t such that vt = rπ/2
and compare to vt1. From the expression vt = rπ/2 implies that t = 7 days. The angle θ is
then given by:

θ =
vt − vt1

r
=

(

1 − t1
t

)

π

2
=

7.5 min

7 days
× π

2
= 1.17 × 10−3 rad

(d) What is the distance to the sun given r and θ (hint: use trigonometric relations between the
sides of right triangles, and note that the distance from Earth to the sun is the hypotenuse).
The radius of the moon’s orbit r = D sin θ ≈ Dθ, where D is the earth-sun separation and
θ � 1 (hence allowing the above approximation to be made). From the above, we get that
D = 2.57 × 1013 cm. This is the earth-sun distance, to within an order of magnitude.
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(e) Given that the angular size of the sun is estimated to be 0.5ffi, what is the diameter of the sun?
The sun has a angular diameter of 0.5ffi = 8.7 × 10−3 radians. Therefore the diameter of the
sun d = 8.7 × 10−3D = 2.24 × 1011 cm, showing that the sun is far larger than anything in the
ancient Greeks’ experience.

4. Two stars have a period of 1000 years and a separation of 0.5”. The parallax of this system of objects
is 0.01”. Assume we are seeing the system of stars face-on, and that they have the same mass.

Figure 4: Binary system separated by 0.5” in the sky. The system is assumed to be
face-on, and the dashed circle denotes the path across the sky that these objects take.

(a) Can these two stars be separately resolved by a 5 m diameter telescope observing at 500 nm?
Use the Rayleigh criterion, that:

θmin = 1.22
λ

D
= 1.22 × 10−7 rad

The angular separation of the stars θ = 0.5′′ = 2.4 × 10−6 rad > θmin, therefore the stars can

be resolved.

(b) What is the distance to this binary system, in pc? The parallax of the object is 0.01” (as Earth
moves 1 AU transverse to this object). This implies that the system is 100 pc away.

(c) What is the separation between the two stars, and hence the semimajor axis, in AU? Note
that an object 1 AU across, seen from 1 pc distance will subtend an angular size of 1”. These
objects are separated by 0.5”, but the objects are 100 pc away. Therefore their separations are
0.5×100 = 50 AU. Since these objects have the same mass, their center of mass lies between the
two objects. The semimajor axis of both objects is 25 AU. The semimajor axis for the reduced
mass object is 50 AU.

(d) What are the masses of the two stars? Using Kepler’s third law, that P 2 ∝ a3/M (where M is
the total mass of the system), we have that:

(

P

1 yr

)2

=
( a

1 AU

)3
(

M

1 M�

)−1

This implies that M = 503/10002M� = 0.125M�.

5. A sun-grazing comet has a period of 106 years. Its point of closest approach is 8×105 km (5.3×10−4

AU).

(a) What is semimajor axis a and its maximal distance from the sun, according to Kepler’s third
law? Kepler’s third law implies:

(

P

1 yr

)2

=
( a

1 AU

)3
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Therefore the semimajor axis a = (106)
2/3

= 104 AU. The maximal distance rmax ≈ 2a = 2×104

AU.

(b) What is the ratio of speeds at the point of closest approach to the speed at farthest distance? You
may use the fact that angular momentum is constant in the comet’s orbit. Angular momentum
is conserved therefore we have that, where vmax denotes the speed at apogee and vmin denotes
the speed at perigee.

rmaxvmax = rminvmin

vmin

vmax

=
rmax

rmin

=
2 × 104

5.3 × 10−4
= 3.8 × 107

6. Consider the problem of a massless ball bouncing between two walls – a photon. The ball always
moves at the speed of light – c. Again consider the case where the walls are moving inwards at speed
W . Here, rather than considering the velocity of the particle, we use the momentum. The relation
between the momentum before the bounce and after the bounce is given by:

pafter = pbefore

(

1 +
2W

c

)

Which is an approximate expression as long as the speed at which the walls are moving inwards
W � c.

Figure 5: Geometry of a massless particle (photon,
for example), bouncing between two walls and ac-
quiring momentum at each bounce. W is the speed
of each wall relative to the lab frame, and X(t) is the
separation between the walls.

(a) Show that X(t) = X0 − 2Wt, where X is the separation between the two walls. Each wall is
moving with velocity 2W relative to each other. Therefore X(t) = X0 − 2Wt, where X0 is the
separation at t = 0.

(b) Noting that X = c∆t, where ∆t is the time that it takes for the photon to traverse the distance,
show that:

dp

p
= −2

c

dX

dt
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And therefore show that pX ≡ constant. Express pbefore → p and pafter = p + ∆p. The above
equation describing the momentum before and after the bounce may then be rewritten as:

p + ∆p = p +
2W

c
p

∆p

p
=

2W

c
= −1

c

∆X

δt

And in the limit of small time steps (or the limit that c � 2W we have that:

dp

dp
= −1

c

dX

dt

If we note that c∆t ≈ X (the wall does not change size between bounces, and the particle moves
at the speed of light) then the system of equations are given by:

dp

p
= −dX

X
d ln p = −d lnX

pX = constant

(c) Consider a cube whose sides are of length L. From a previous problem set, show that EV 1/3 =
constant where E is the energy of a single particle and V is the volume of the box. To solve
this problem, assume pxX

2 = pyY
2 = pzZ

2 and use the fact that for a relativistic particle
E =

√

p2
x + p2

y + p2
zc). This may be familiar to some as the equation of state of a relativistic

gas. Suppose the following relation:

px = C/L = CV −1/3

py = C/L = CV −1/3

pz = C/L = CV −1/3

The energy E = c
√

p2
x + p2

y + p2
z = cC

√
3V −1/3. This implies that EV 1/3 ≡ constant.

7. A laser puts out 1013 erg s−1 of power into a circular beam with aperture size of 1 cm. The laser
emits light monochromatically at 500 nm.

(a) What is the energy flux (in erg cm−2 s−1) and energy density (in erg cm−3) within the beam? The
energy flux F = P/ (πR2) = 3.18×1012 erg cm−2 s−1. The energy density u = F/c = 1.06×102

erg cm−3.

(b) Considering the energy of a given photon in the laser beam, what is the flux of photons (photons
cm−2 s−1) and number density (photons cm−3) at the beam aperture? The energy of each photon
E = hc/λ = 3.98 × 10−12 erg. Therefore the flux f and number density n of photons:

f =
F
E

= 8.01 × 1023 photons cm−2 s−1

n =
u

E
= 2.67 × 1013 photons cm−3

(c) Given what you know about diffraction, what is the opening angle of the beam in arcseconds?
Using the Rayleigh formula, the opening angle θ = λ/D = 5 × 10−5 rad.
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(d) At what radius R from the laser, but within the beam’s opening angle, will you have to travel
to see one photon cm−2 s−1? At large enough distances, the flux of energy goes as:

F =
P

2πR2 (θ)2 /2
=

P

πR2θ2

A diagram explaining this in better detail is shown here: Furthermore, the flux of photons from

Figure 6: Finite opening angle 2θ of the laser beam, which does
not subtend the entire solid angle 4π for a sphere. The solid
angle covered by the beam is actually Ω = 2π (1 − cos θ) ≈ πθ2.
Finally, although this is not necessary to know, the intensity falls
off as 1/R2 when the beam is diffraction limited (D/R < λ/D).

the beam as a function of radius from the laser:

f =
P

πR2 (λ2/D2)
× λ

hc
=

PD2

πR2λhc

R =

√

PD2

πfλhc

Which results in a distance of R = 1.8 × 1016 cm ≈ 2 × 10−2 light-years!

8. A hydrogenic particle has nuclear charge Ze and nuclear mass Amp. Using the quantization of
angular momentum L = n~ and by balancing centrifugal forces with electrostatic forces:

(a) What are the radii rn of the different quantum states with different angular momentum n~?
What is the radius of the ground state? Use A and Z as undetermined constants. Here we
make the simplifying assumption that since the mass of the electron me � mp, that the system
consists of the ion’s being stationary. The angular momentum of the system ` = n~ = mevnrn.
Solving for the force balance equations:

mev
2
n

rn
=

Ze2

r2
n

m2
ev

2
nr2

n = n2
~

2 = meZe2rn

rn =
n2

~
2

mee2
Z−1 = n2Z−15.3 × 10−9 cm

The radius of the ground state r0 = Z−15.3 × 10−9 cm.
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(b) What are the energy levels En of the different quantum states; what is the energy of the ground
state? You may again use A and Z as undetermined constants. According to the virial theorem,
the total energy is half the potential energy. Therefore the total energy:

En = −Ze2

2rn
= −Ze2

2
× meZe2

n2~2
= −meZ

2e4

2~2n2
= −Z2 13.6 eV

n2

So that the energy of the ground state is −Z2 (13.6 eV).

9. Jupiter has a mass M = 2 × 1030 gm and a radius R = 7 × 109 cm. Using dimensional arguments,
estimate the following:

(a) The central pressure Pc. From dimensional arguments, P = GM 2/R4. Substituting these values
for Jupiter yields P = 1.1 × 1014 dyn cm−2.

(b) The average energy per particle. Assume the average particle is a hydrogen atom with mass mp.
The total number of particles N = M/mp. The total thermal energy ∼ gravitational binding
energy E = GM 2/R. Therefore the energy per particle ε = E/N = GMmp/R ≈ 3.2 × 10−11

erg = 20 eV.

(c) The average temperature within Jupiter. How does this compare to the outer atmospheric
temperature of 200 K? Assume the equation of state is described by an ideal gas. Putting the
above expression ε = kBT , given the above energy, T = 2.3 × 105 K.

10. A star has density profile ρ = ρ0 (1 − r/R?), where R? is the stellar radius. Calculate the following:

(a) The star mass M?. Using the mass continuity equation:

M? = 4πρ0

∫ R?

0

r2 (1 − r/R?) dr = 4πρ0

(

R3
?

3
− R4

?

4R?

)

=
1

3
πρ0R

3
?

This implies that ρ0 = 3M?/ (πR3
?).

(b) The central pressure Pc. The enclosed mass as a function of radius r is given by the following:

M(r) = 4π
3M?

πR3
?

∫ r

0

r′
2
(1 − r′/R?) dr′ =

12M?

R3
?

(

1

3
r3 − 1

4R?
r4

)

M(r) = 12M?

(

1

3

[

r

R?

]3

− 1

4

[

r

R?

]4
)

The pressure gradient is given by:

dP

dr
= −GM(r)

r2
ρ(r) = −36GM2

?

πr2R3
?

(

1

3
[r/R?]

3 − 1

4
[r/R?]

4

)

(1 − r/R?)

dP

dr
= −36GM2

?

πR5
?

(

1

3
[r/R?] −

1

4
[r/R?]

2

)

(1 − r/R?)

The pressure at the surface is zero, therefore we have that:

P (R?) = Pc −
36GM2

?

πR5
?

∫ R?

0

(

1

3
[r/R?] −

1

4
[r/R?]

2

)

(1 − r/R?) dr

Pc =
36GM2

?

πR4
?

∫ 1

0

(

1

3
x − 1

4
x2

)

(1 − x) dx =
5GM2

?

4πR4
?

Here we used the variable substitution, r = xR?, for the last two steps in the integration.
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(c) The gravitational binding energy. The gravitational binding energy of this mass distribution:

U =

∫

V

U (r) ρ(r) dV

U = −
∫ R?

0

GM(r)

r

(

4πr2ρ(r)
)

dr = −4π

∫ R?

0

GM(r)rρ(r) dr

U = −4πG
3M?

πR3
?

× 12M?R
2
?

∫

1

0

x

(

1

3
x3 − 1

4
x4

)

(1 − x) dx = −26GM2
?

35R?

Remember, always check that your answers are dimensionally correct.

(d) The average thermal (kinetic) energy per particle. Assume the average mass of a particle is mp/2
(fully ionized hydrogen plasma). According to the virial theorem, the total thermal energy of
this system of particles is:

K = −1

2
U =

13GM2
?

35R?

The number of particles is N = 2M?/mp, so that the average thermal energy per particle:

ε =
2Kmp

M?
=

26GM?mp

35R?

11. Quark stars are theorized to be objects smaller than neutron stars but larger than black holes. These
stars have an average particle mass mQ > mp, where mp is the proton (approximately neutron) mass.
The Schwarzchild radius R = 2GM/c2 is the radius of a black hole’s event horizon, and places a lower
limit on the size of the object. Here you will attempt to answer questions on the maximum possible
particle mass within this object.

(a) Assume a noninteracting nonrelativistic fermi gas. The equation of state is given by:

P = 0.0485
h2n5/3

mQ

= 0.0485
h2ρ5/3

m
8/3

Q

One can show that the central pressure is given by:

Pc = 0.770
GM2

R4

And the central density ρc = 1.43MR−3. Use these equations to derive a mass-radius relation
for the star with mQ. The equation of state implies the following expression for the central
pressure in terms of the central density:

Pc = 0.770
GM2

R4
= 0.0485

h2ρ
5/3
c

m
8/3

Q

= 0.0485 (1.43)5/3 h2

m
8/3

Q

M5/3

R5

R = 0.114
h2

Gm
8/3

Q

M−1/3 = 1.54 × 106

(

mQ

mp

)−8/3 (

M

M�

)−1/3

cm
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(b) Set R = 2GM/c2. Estimate the maximum value of mQ, in terms of mp, for a 1 M� quark
star. Given the expression for the radius of a black hole, R = 2GM/c2, we have the following
inequality:

0.114
h2

Gm
8/3

Q

M−1/3 >
2GM

c2

mQ < 0.342M−1/2

(

hc

G

)3/4

mQ < 3.08 × 10−24 gm
mQ

mp
< 1.8

Implying that quark stars must have finely balanced particle masses in order to ensure smaller
stars (but large enough that their radii are above the event horizon).

12. A neutrino created in the sun has a cross sectional area of 10−41 cm2 per particle. Here you will
answer questions concerning neutrino absorption within the sun.

(a) The mass of the sun M� = 2× 1033 gm and the radius of the sun R = 7× 1010 cm. What is the
column mass density Σ in gm cm−2 for the sun? The column mass density Σ = M�/

(

4πR2
�

)

=
3.25 × 1010 gm cm−2.

(b) Estimate the average mass per particle mp/2. What is the column number density nΣ of particles
from the surface to the interior in particles cm−3? The column number density then becomes
2Σ/mp = 3.91 × 1034 cm−2.

(c) Given the cross section σ, what is the optical depth τ = σnΣ for neutrino absorption within the
sun? Therefore, what fraction of neutrinos that are created within the sun get absorbed? The
optical depth to neutrino scattering τ = σnΣ = 3.91× 10−7. Since τ � 1, only τ = 3.91× 10−7

of the neutrinos produced within the sun are absorbed.

13. Here you will estimate the neutrino luminosity (neutrinos cm−3 s−1) within the sun’s core. The sun’s
central density ρc = 1.6 × 102 gm cm−3. 75% of the sun’s matter is hydrogen by mass, while 25% of
it is helium.

(a) Assuming that He has an atomic number of 4 and atomic mass of 2, what is the average mass
per particle within the sun? Electrons do not provide mass. The number density of electrons is
given by:

ne = nH + 2nHe

The number densities of hydrogen nH and helium nHe are given by:

nH =
3ρ

4mp

nHe =
ρ/4

4mp

=
ρ

16mp

Therefore the total number density of particles within fully ionized solar material:

n = 2nH + 3nHe =

(

3

2
+

3

16

)

ρ

mp
=

27ρ

16mp
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The average atomic mass per particle µ = ρ/n:

µ =
ρ

n
=

16

27
mp

(b) What is the number density np of protons within the sun? The number density of hydrogen
within the sun:

nH =
3ρ

4mp
= 7.23 × 1025 cm−3

(c) The neutrino-producing part of the main energy-generating sequence in the proton-proton chain
is given by the following:

1
1H + 1

1H → 2
1H + e+ + νe

(

1.4 × 1010 yr
)

The rate at which neutrinos are being created is then given by ṅν = np/τ , where τ is the above
timescale. What is ṅν in neutrinos cm−3 s−1? The rate at which electron neutrinos are produced
ṅν = nH/τ . τ = 1.4 × 1010 yr = 4.42 × 1017 s. Therefore ṅν = 1.64 × 108 neutrinos cm−3 s−1.
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