
Hints For Problem Set #3

Here are some hints to problem set #3. I will outline how to solve the problems and give other useful tips
not within the problem set.

1. For part (a), the center of mass velocity is the mass-weighted average velocity of the system of
particles. For a system of N particles with given masses and velocities Mi and vi, where i = 1, . . .N ,
the center of mass velocity is:

vCM =

∑N

i=1 Mivi
∑N

i=1 Mi

The center of mass frame is useful because the total momentum of the system in that frame is zero.

For part (b), solve the problem by noting that in the center of mass frame, the motions of both
particles are circles about their center of mass position: Their velocities in the center of mass frame

Figure 1: Velocities as seen in the lab frame and the center of mass frame, in which v′

1 = v1 − vCM

and v′

2 = v2 − vCM. Both masses undergo circular motion with radius r1 and r2 (for mass M1 and M2,
respectively) about the center of mass.

are given by:

v′

1 = v1 − vCM

v′

2 = v2 − vCM

In the center of mass frame, each particle undergoes circular motion. Without loss of generality
choose mass M1. In some frame rotating with mass M1, the gravitational force between them is
balanced by the centrifugal force pushing mass M1 out, therefore:

Fgravitational = Fcentrifugal

GM1M2

r2
=

M1v
′

1
2

r1

To solve this problem for r, determine what r1 (separation of mass M1 from the center of mass) and
r2 (separation of mass M2 from the center of mass) are.
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2. To solve the problem carefully, assume the carbon nucleus has infinite mass (in reality, the mass of
the carbon atom is orders of magnitude larger than the electron mass). The angular momentum of
this system is quantized in units of ~, Planck’s constant divided by 2π:

` = mevr = n~

Where n is some integer.

In a frame “moving” with the electron, the centrifugal force balances out the electrostatic attraction
between the electron and the carbon nucleus, charge Z = 6:

mev
2

r
=

Ze2

r2

Use the quantization of angular momentum with the force balance equation to calculate vn and rn

(electron velocities and radii for energy level n) – make sure to check that your answers have the
proper dimension! The energy of the bound state En are given by:

En =
1

2
mev

2
n − Ze2

rn

= −Ze2

2rn

The bound state is n = 1. The energy needed to ionize a carbon atom with one electron is the energy
required to unbound the electron in the ground state.

3. For part (a), the flux of radiation is the luminosity (power) over the surface area:

F =
L

4πr2

Recall that the energy flux is the flow rate of energy density, and has dimensions of energy density
× the speed at which the energy is propagated. Knowing the speed at which electromagnetic energy
propagates, and the flux, you can calculate the energy density u. Compare to the energy density due
to blackbody radiation u = aT 4, using values for T for the cosmic microwave background and a as
given in the book.

For part (b) note that the density of air ρ = 10−3 gm cm−3 and that the angular frequency ω = 2πν,
with ν as a given. Compare to the energy density of the cosmic microwave background.

4. Here is a schematic diagram of the asteroid blasting off at some velocity v perpendicular to the plane
of its initial orbit. I have drawn a before and after pictures here.
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Figure 2: Plot of the orbital parameters r = rer, v, and L = mr×v before and after the orbital change. θ
refers to the angle between the old L and newer L′, and is the angle of inclination of the new orbit relative
to the old orbit.

To determine whether the orbit is circular, elliptical, parabolic, or hyperbolic, note the following
result:

E > 0 hyperbolic

E = 0 parabolic

Emin < E < 0 elliptical

E = Emin circular

Here the E is calculated by keeping the angular momentum constant while changing the total (kinetic
+ potential) energy of the particle of mass m in its orbit. Note that for circular orbits of angular
momentum magnitude L =

√
Gm2Mr, the energy within the orbit is E = Emin = −GMm/ (2r) =

−L2/ (2mr2). Calculate out the total energy at one instant of its orbit:

E =
1

2
mv2 − GMm

r

E ′ =
1

2
mv′2 − GMm

r

Before and after the orbital change. And calculate out the angular momentum before and after the
orbit:

L = m
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The inclination of the orbit is given by θ. Note the following result:

L · L′ = |L′| |L| cos θ

5. For part (a) assume the mass of the moon is zero (a good approximation, since MMoon � MEarth).
Furthermore, the mass of the sun is much larger than that of the Earth, MSun � MEarth. The angular
frequency of the orbit is given by:

ω =

√

GM

R3

Where R is the radius of the orbit. Recall that ω = 2π/P where P is the orbital period.

For part (b) again assume the circular orbit but note that the energy of Earth in its orbit has changed.
The velocity of Earth does not change before and after the sun’s explosion.

Eold =
1

2
MEarthv

2 − GMSunMEarth

R
= −GMSunMEarth

2R

To be unbound, Enew = 0:

Enew =
1

2
MEarthv

2 − GM ′

SunMEarth

R
= 0

And use these results to calculate the fraction of the sun’s mass that needs to be lost for the earth
to become unbound.
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