
Practice Problems: ASTR 211 Final Exam

1. An object in the sky is located at celestial coordinates RA: 19h 23m 14s, Dec: -30ffi 22’ 3”.

(a) What is the latitude, north of which the object will not be on the horizon?
Since the object is located at -30ffi 22’ 3”, look for a northern latitude at which the object will
not be visible below the horizon. At the equator, the maximum elevation is 90−

(

30ffi 22′ 3′′
)

=
59ffi 37′ 57′′. Therefore the maximum northern latitude, above which the star lies below the
horizon, is at 59ffi 37′ 57′′. This is shown below:

Figure 1: A stellar object at a declination of -30ffi

will be above the horizon except at a latitude of 30
N, where its maximum elevation will be the horizon.

(b) At what times of the year will the object be visible in the night sky, where it can be observed?
To answer this question, consider how the sun moves across the sky, and assume that the object
is “visible” when the sun has a sidereal coordinate 6 hours ahead or behind this celestial object.
Assume you are at zero degrees longitude.
At the vernal equinox, March 21, the sun is located at RA: 0h at solar noon. At the winter
solistic, Dec. 20, the sun is at RA: 18h at solar noon. Therefore, there remains approximately:

t =
24− 19h 23m 14s

24
× 365.25 = 70.2 days

Before the vernal equinox. This is approximately at January 10. Therefore the object will be
visible in the night sky from April 10 until October 10.

(c) Assume you are in the Northern Hemisphere. On what date will the object have the highest
elevation above the horizon at exactly local (solar) midnight? Assume you are at zero degrees
longitude.
At local solar midnight, the sun’s sidereal coordinate is at RA: 7h 23m 14s. Using the above
result, or noting that this is exactly six months before when the sun is at RA: 19h 23m 14s, this
date is June 10.

1



Figure 2: The precession of the celestial poles about the
ecliptic. This also changes the location of the vernal
equinox by approximately 54”/yr

2. The Zodiac consists of those constellations through which the sun passes through in its yearly motion
across the sky. Equivalently, these are the constellations that lie on the ecliptic plane. The Zodiac
constellations, and hence the signs that you see in horoscopes, were “finalized” 2500 years ago. Why
is it that the Zodiac constellations no longer correspond to a specific Gregorian month (i.e., the sun
is no longer in the constellation Leo in the month of August).
The zodiac consists of constellations that lie on the ecliptic; therefore, as long as the earth’s ecliptic
plane does not change, the sun will continue to move across these constellations as seen from Earth.
However, due to precession the locations of the equinoxes no longer correspond to their position 2500
years ago. In fact, the vernal equinox precesses by 360ffi/23, 500 = 0.92′ per year.

3. The sun undergoes circular motion about the galactic center.

(a) The period of the sun’s orbit is 250 million years and the radius of the sun’s orbit is 10 kiloparsecs.
What is the sun’s speed in its orbit around the galactic center?
The speed of the sun’s orbit:

vs =
2πR

T
=
2π (104 × 3.1× 1018 cm)
2.5× 108 × 3.2× 107 s = 2.5× 107 cm s−1

Or 250 km/s.

(b) What is the mass interior to the sun’s orbit?
Assume a purely radial distribution of matter. Using Newton’s laws of gravitation to determine
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the gravitational force, where G = 6.673× 10−8 in appropriate cgs units:
GM

R2
=

v2s
R

M = v2sR/G = 2.9× 1044 gm = 1.5× 1011 M �

(c) Define a “disruptive” event (or collision) when a star comes within 100 AU of the sun. Given
that the density of stars is 0.1 pc−3, what is the probability of a disruptive event within one 250
million year period?
There are two questions to be asked. One, what is the volume swept out in this torus? If one

Figure 3: The volume filled out by the sun in its motion
around the galaxy. The volume of the torus is πR2d,
where R = 100 AU is the torus cross-section and d =
2π × 10 kpc is the torus circumference.

or more stars lies within this torus, then the sun will be “disrupted” in its orbit. The volume
of the torus swept out by the sun in one orbit is:

V = πR2d = π
(

100× 1.5× 1011 cm
)2 ×

(

104 × 3.1× 1018 cm
)

= 2.2× 1053 cm3 = 0.257 pc3

The density of stars in the solar neighborhood is n = 0.1 pc−3. Therefore the probability of a
collision:

p = nV = 2.57× 10−2

4. An object from Earth is observed to have a synodic period of 2 years.

(a) What are the two possible orbital periods of the star?
If the planet is superior, then it moves with a slower speed. If it is inferior, the planet moves
with faster angular speed. The earth has orbital frequency ω � = 2π/P � . The planet has orbital
frequency ωP = 2π/PP . For either case, after a period of time T the relative angle (in radians)
subtended by the planets:

inferior: θ = ωrelT = 2πT

(

1

PP

− 1

P �

)

superior: θ = ωrelT = 2πT

(

1

P �
− 1

PP

)

A synodic period is when the relative angle between the planets is 2π radians. Thus, setting
2π = ωrelPsyn:

inferior:
1

Psyn
=

1

PP

− 1

P �

superior:
1

Psyn
=

1

P �
− 1

PP

3



The synodic period is 2 years. P � = 1 yr. Therefore we have the following periods:

Pinferior =
2

3
yr

Psuperior = 2 yr

(b) Using Kepler’s third law, what are the two possible orbital radii of these planets?
Kepler’s third law states that P 2 ∝ a3, where P is the period and a is the semimajor axis.
Assuming circular orbits, the radii of the inferior and superior planets:

Rinferior = (2/3)
2/3 AU = 0.76 AU

Rsuperior = 2
2/3 AU = 1.59 AU

5. What are the dimensions of the following physical constants? You may express your answer in terms
of fundamentals (MαLβT γ, where M is mass, L is length, and T is time) or in terms of cgs units
(gmα cmβ sγ).

(a) h (Planck’s constant):The units of Planck’s constant are energy-time. Energy has units of M
L2 T−2. Therefore h ≡ML2T−1. In cgs units, gm cm−2 s−1.

(b) G (Gravitational constant): Recall that GM 2/L has units of energy. Therefore:

GM2L−1 ≡ML2T−2

G ≡M−1L3T−2

Or in cgs units, gm−1 cm3 s−2.

(c) c (speed of light):The speed of light is a velocity, therefore has units of c ≡ LT −1 or in cgs units,
cm s−1.

6. A sun-grazing comet has a period of 106 years. The point of closest approach of the comet is 800,000
km (5.3× 10−4 AU).

(a) What is the semimajor axis of the comet, using Kepler’s third law?

Kepler’s third law, P 2 ∝ a3, implies that the semimajor axis, a = (106)
2/3
= 104 AU.

(b) What is the maximal distance of the comet from the sun, in AU?
The semimajor axis 2a = ra + rp, where ra is the aphelion (farthest) distance and rp is the
perihilion (closest) distance. Using the above results, given rp:

ra = 2× 104 AU− 5.3× 10−4 AU ≈ 2× 104 AU

(c) Using conservation of total (kinetic + potential) energy and conservation of angular momen-
tum, what is the ratio of kinetic energy at perihilion (closest approach) to aphelion (furthest
approach)?
First, calculate the angular momentum. Aphelion and perihilion correspond to maximal radial
distances, so at these points the radial velocity is zero. The velocity is purely tangential. The
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angular momentum ` = mvtr, where vt is the tangential velocity. Conservation of angular
momentum tells us, since the speed at aphelion and perihilion is the tangential velocity:

mvara = mvprp

vara = vprp

The ratio of the kinetic energies are:

ρ =
1
2
mv2p
1
2
mv2a

=
v2p
v2a
=

r2a
r2p
=

(

2× 104
5.3× 10−4

)2

= 1.42× 1015.

7. A certain binary star system has a period of 50 years. The binary system has parallax of 0.01” and
semimajor axis of 0.3”.

(a) What is the semimajor axis, in AU, of this binary system?
One can explicitly calculate out the distance to the star in AU, and from that calculate the
separation. However, one can implicitly use the definition of the parsec. An object 1 AU in
size, located a distance 1 pc away, will subtend 1”. If it is located 10 pc away, the object will
subtend 0.1”. From this alone, a = 0.3/0.01 = 30 AU.

(b) What is the total mass, in M � , of the two objects?
The complete form of Kepler’s third law goes as P 2 ∝ a3/Mtot. Given this proportionality
relation (note: it is a good idea to look over proportionality relations), we can construct the
following equality:

(

P

1 yr

)2

=
( a

1 AU

)3
(

Mtot

M �

)−1

Substituting the period in years and the semimajor axis in AU:

Mtot

M �
=
303

502
= 10.8

Mtot = 10.8M �

(c) Companion A has semimajor axis of 0.05” as seen from Earth while companion B has semimajor
axis of 0.25”. What are their masses, in M � ?
Using the lever principle, the masses of the companions:

MA =
0.25

0.3
Mtot = 9M �

MB =
0.05

0.3
Mtot = 1.8M �

8. A telescope has diameter D, and it collects light of wavelength λ. Derive, using the uncertainty
principle, the angular resolution of this telescope.
A quantum of electromagnetic radiation, a photon, obeys the uncertainty principle. This photon
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Figure 4: Uncertainty in the position of a given photon results in the uncertainty in the photon momentum,
whose main contribution to the angle observed is along py. Here θ ≈ py/p.

obeys the uncertainty principle.

∆p∆x = h

∆p =
h

D

θ =
∆p

p
=

h

Dp

The momentum of a photon p = E/c = h/λ, where λ is the wavelength. Therefore the angular
resolution of a telescope with aperture D:

θ =
hλ

Dh
=

λ

D

9. Consider the light from two binary stars. One star has absolute magnitude MA = −2.5, and the
other star has absolute magnitude MB = 0.

(a) What is the absolute visual magnitude of the binary system?
The magnitude of a star can be represented by the following:

M? = −2.5 log10
(

F?

F0

)

Where F0 is the reference radiant flux, giving 0 magnitude. This implies that the magnitude of
the two stars is given by:

MA+B = −2.5 log10
(

FA + FB

F0

)

= −2.5 log10
(

10−0.4MA + 10−0.4MB
)

MA+B = −2.5 log10 (10 + 1) = −2.5 log10 11 = −2.603
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(b) The stars are located 100 pc away. What is the apparent magnitude of each star and the binary
as a whole?
The stars are 10 times further away, hence 100 times dimmer (100 times smaller radiant flux),
hence 5 magnitudes larger each.

mA =MA + 5 log10

(

d

10 pc

)

= 2.5

mB =MB + 5 log10

(

d

10 pc

)

= 5

mA+B =MA+B + 5 log10

(

d

10 pc

)

= 2.397

10. A star is observed to have a parallax of 0.2”, a proper motion of 1.3”/year, and a Doppler blueshift
of 1.1 Åfor a 5500 Å absorption line.

(a) What is the radial velocity of this star? Is it moving towards or away from us?
For small velocities, the radial velocity is given by:

vr
c
≈ ∆λ

λ
= − 1.1

5500
vr = −6× 106 cm/s

The star has radial velocity of 6× 106 cm/s towards us.
(b) What is the transverse velocity of this star?

Again, implicitly using the definition of a parsec, the star has transverse velocity:

vT =
1.3

0.2
= 6.5 AU/yr =

6.5× 1.5× 1013
86400× 365.25 = 3.1× 10

6 cm/s

(c) What is the star’s total speed?
The transverse and radial velocities are perpendicular to each other. Therefore the total speed

v =
√

v2r + v2T = 6.75× 106 cm/s

(d) bonus Assuming the star’s relative velocity to the sun does not change, what is the closest
approach of the star to the sun? How many years will it take for the star to approach the sun?
To answer this question, first determine what angle the velocity vector makes with our line of
sight. If one knows the law of cosines, it turns out that:

cos θ =
vT

√

v2T + v2R

sin θ =
|vR|

√

v2T + v2R

The closest approach distance:

y = d0 sin θ =
|vR| d0

√

v2R + v2T

7



Figure 5: Diagram showing how to calculate the an-
gle θ in determining the closest approach of the star.
The geometry of closest approach is such that the hy-
potenuse has length d0, the current distance to the star.
sin θ = y/d0.

And the time taken for closest approach:
√

v2R + v2TT =
vTd0

√

v2R + v2T

T =
vTd0

v2R + v2T

Substituting the above values for the transverse velocity, the radial velocity, and the current
separation of d0 = 5 pc:

y = 4.45 pc

T = 3.32× 104 yr

11. Here are some questions about photons:

(a) What is the momentum carried by an individual photon of frequency ν?
A photon has energy E = hν. The momentum p = E/c = hν/c.

(b) Given a radiation flux of 30 erg s−1 cm−2, what is the pressure, in dyne cm−2?
Pressure is another way of saying momentum flux. Given the radiation flux, and the fact that
for a collection of photons, the momentum of a photon p = E/c, implies that the pressure
P = F/c. The pressure here:

P =
30

3× 1010 = 10
−9 dyne cm−2

(c) What is the force acting on a spherical dust grain of radius 10−4 cm?
The problem here is not uniquely specified. If we assume that the dust grain is perfectly
absorbing, then each photon will impart momentum E/c onto the grain. The cross-sectional
area of the grain is πR2, where R is the grain radius. The force acting on the grain is then:

F = πR2P = 3.14× 10−17 dyne
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If the grain is perfectly reflecting, then each photon will bounce off perfectly from the grain with
the same energy but opposite momentum (due to the fact that the rest-energy and momentum
of the grain is very much larger than that of an individual photon). Thus, a momentum of 2E/c
will be imparted to the grain by a photon of energy E. The force acting on the grain:

F = 2πR2P = 6.28× 10−17 dyne

12. A hydrogen like atom has nuclear charge Ze and nuclear mass AmH . Using the quantization of
angular momentum (L = n~) and the balance of centrigugal forces with electrostatic forces:

(a) Calculate the radii of the different quantum states. What is the radius r0 of the ground state?
You may use A and Z as undetermined constants.
The balance of centrifugal acceleration with electrostatic attraction:

Ze2

r2n
=

mev
2
n

rn

m2
ev
2
nr
2
n = meZe2rn

And conservation of angular momentum:

mevnrn = `n = n~

m2
ev
2
nr
2
n = meZe2rn = n2~2

rn =
n2~2

mee2Z
= a0n

2

a0 = 5.29× 10−8Z−1 cm

(b) Calculate the energy levels of the different quantum states. What is the energy E0 of the ground
state? You may use A and Z as undetermined constants.
Using the virial theorem, or from an explicit calculation, one can show that the energy levels
go as:

En = −
Ze2

2rn
= −Z2mee

4

2~2n2
= E0n

−2

E0 = −13.6Z2 eV

You may assume the electron mass is much smaller than the nuclear mass.

13. Some interstellar dust has a visual wavelength opacity of 1 cm2 gm−1 and a density of 10−18 gm
cm−3.

(a) What is the optical depth assuming a thickness of 1 light year? What is the radiation flux after
1 light year assuming an incident intensity of 10−12 erg cm−2 s−1?
The mean free path ` = 1/ (κρ). Therefore the optical depth:

τ = s/` = κρs =
(

86400× 365.25× 3× 1010
) (

10−18
)

= 0.946728
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And the outgoing intensity, given the incident intensity:

Ileft = Iine
−τ = 3.88× 10−13 erg cm−2 s−1

(b) What is the visual extinction, in magnitudes per light year, of this dusty cloud? If a star suffers
visual extinction AV = 2, what is the physical depth of this interstellar cloud?
The visual extinction, in terms of the optical depth, can be written as the following:

A = −2.5 log10 (Fleft/Fin) = −2.5 log10
(

e−τ
)

= −2.5 ln (e
−τ )

ln 10

A =
2.5

ln 10
τ =

2.5

ln 10
× κρs

A/s =
2.5

ln 10
κρ = 1.09× 10−18 mag/cm = 1.00 mag/ly

Therefore, the dusty cloud needs to be 2 ly deep in order to cause a visual extinction AV = 2.

14. The following edge-on binary has the following light curve, in visual magnitude. Assume the two
stars have identical masses and move in circular orbits.

Let star A has smaller radius than star B. The stars move with velocity 107 cm s−1 about their
center of mass at an inclination of 90ffi.

(a) What are the radii of star A and star B given the light curves shown above?
From the light curve going from maximum to first minimum, implies that we are seeing an
eclipse of star A by star B. In the second, we are seeing a (partial) eclipse of star B by star
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A. When the eclipse occurs, the stars are moving parallel to each other with a relative speed of
2× 107 cm/s.

rA = 2× 107 × (2× 86400) /2 = 1.728× 1012 cm
rB = 2× 107 × (5× 86400) /2 = 4.32× 1012 cm

From which we have that RA = 0.4RB.

(b) Assuming star A has twice the effective temperature as star B, what is F1/F0 and F2/F0 for
the above stellar system?
When neither star is uneclipsed, the flux is given by:

F0 = F?

(

R2AT
4
A +R2BT

4
B

)

At the first minimum, star A is eclipsed. The flux:

F1 = F?

(

R2BT
4
B

)

And at the second minimum, star B is partially eclipsed by star A. The flux in this case:

F2 = F?

(

R2AT
4
A +

(

R2B −R2A
)

T 4B
)

Here F? is a dimensional unit that gives the proper flux as seen from Earth. Thus:

F1
F0
=

R2BT
4
B

0.42 × 16T 4BR2B + T 4BR
2
B

=
1

2.56 + 1
= 0.281

F2
F0
=
0.42 × 24R2BT 4B + (1− 0.42)R2BT 4B

0.42 × 24R2BT 4B +R2BT
4
B

=
2.56 + 1− 0.16

2.56 + 1
= 0.955

15. A star of mass M? has density profile given by ρ = ρ0 (1− r/R?), where R? is the stellar radius.

(a) What is ρ0 in terms of M? and R?? Use the mass continuity equation:

dM

dr
= 4πr2ρ(r)

From the continuity equation, we have that:

M? =

∫ R?

0

4πρ0 (1− r/R?) r
2 dr = 4πρ0R

3
?

∫ 1

0

(1− x)x2 dx

M? = 4πρ0R
3
?

[

x3

3
− 1
4
x4
]1

0

=
1

3
πρ0R

3
?

ρ0 =
3M?

πR3?

Where we have made the change of variable x = r/R?, so that dr = R? dx.

(b) What is the pressure P (r) as a function of radius, setting P (r = R?) = 0? Write your answer
in terms of M? and R?. Recall the equation for hydrostatic equilibrium:

dP

dr
= −GM(r)ρ(r)

r2
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First, from the above equation we have that the mass of this star as a function of normalized
radius x = r/R?:

M(x) = 4πρ0R
3
?

∫ x

0

y2 (1− y) dy =
1

3
πρ0R

3
?

(

4 [r/R?]
3 − 3 [r/R?]

4
)

M(x) =M?

(

4x3 − 3x4
)

The pressure equation in terms of this normalized radius:

dP

dx
= −3GM2

?

πR4?

(

4x3 − 3x4
)

(1− x)x−2 = −3GM2
?

πR4?

(

4x− 3x2
)

(1− x)

P (x) = P0 −
3GM2

?

πR4?

∫ x

0

(

4y − 3y2
)

(1− y) dy = P0 −
3GM2

?

πR4?

∫ x

0

(

4y − 7y2 + 3y3
)

dy

P (x) = P0 −
3GM2

?

πR4?

(

2x2 − 7
3
x3 +

3

4
x4
)

Now at the surface, x = 1, P (x) = 0. Therefore the pressure is given by:

0 = P0 −
5GM2

?

4πR4?

P0 =
5GM2

?

4πR4?

And the pressure as a function of radius:

P (r) =
5GM2

?

4πR4?
− 3GM2

?

πR4?

(

r

R?

)2
(

2− 7
3

[

r

R?

]

+
3

4

[

r

R?

]2
)

(c) Now replace R? with R � = 7 × 1010 cm and M? with M � = 2 × 1033 gm. What is the central
pressure?
Substituting in the values for the sun, we get a central pressure P0 = 4.42× 1015 dyne cm−2.

16. Neutrinos have a cross section for capture and interaction of approximately 10−41 cm2 per particle.

(a) Given that the mass of the sun is M � = 2× 1033 gm, the radius R � = 7× 1010 cm, what is the
column mass density of particles in a column from the sun’s surface to the sun’s core?
The mass column density is the mass of the sun distributed over a spherical shell of radius R?.
Therefore, the column mass density:

σ =
M?

4πR4?
=

2× 1033
4π × (7× 1010)2

= 3.248× 1010 gm cm−2

(b) The average atomic mass of material in the sun is 2.2× 10−24 gm/particle. What is the corre-
sponding number density of particles in a column from the sun’s surface to the sun’s core?
With the above mass density, the column number density is given by:

σn =
σ

m
=
3.248× 1010
2.2× 10−24 = 1.48× 10

34 particles cm−2
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(c) What is the optical depth of the sun to neutrinos?
The optical depth τ = σnσν = 10−41 × 1.48 × 1034 = 1.48 × 10−7. The sun is transparent to
neutrinos.

17. Why are the angular resolutions of single-dish telescopes, say with a diameter of 100 meters, observing
1 cm wavelength sources, so much worse than optical telescopes, with diameters of 1 m, observing
5000 Åwavelength sources?
The angular resolution of a telescope is θ = λ/D. For a typical radio telescope, the best resolution
that can be achieved with a single dish is θradio = 1/104 = 10−4 rad = 10′′. For a typical optical
telescope, the best resolution θoptical = 5× 10−7 rad = 5.2′′ × 10−2.

18. Describe the main mechanism (κ) that drives stellar pulsation. What is the ε mechanism, and why
is it unimportant for stellar pulsation?
The κ mechanism results in unstable oscillations, due to the fact that when the He II partial ioniza-
tion layers are compressed or heated adiabatically, their opacity increases (rather than decreases),
resulting in a mild instability that can heat and push the outer layers of the star out. These partial
ionization layers cool, and then drive the oscillation again.

Generally speaking, the variability is most pronounced when the He II partial ionization layer is
located deeper in the stellar envelope rather than in the core. As a result more work can be done on
the gas, resulting in greater luminosity and temperature variations.

The ε mechanism is where the compressions and expansions of the star result in variability in the
energy generation rate, due explicitly to changes in density and pressure in a radiative nuclear-
burning stellar core. This is not deemed important, because it is believed that stellar pulsation is
dominated by pressure modes – as the frequency and wavenumber of these modes increase, they
become more concentrated about the surface. In fact, the pressure modes that are characteristic of
stellar pulsation have a node (zero displacement) at the core, implying that changes in core density
and pressure are negligible – the ε mechanism is unimportant.

19. Shown below is the light curve of a typical white dwarf. This variability has period of 1.15 days.

The sound crossing time within a white dwarf is approximately 10 seconds. Is the pulsation due to
pressure variations? Why or why not?
The fundamental pressure mode (breathing mode) has a period equal to the sound crossing time,
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here 10 seconds. All other pressure modes, those that possess nodes or that have angular profile,
have higher frequencies and hence lower periods.

Gravity modes, in which the mode propagates in directions normal to the gravitational force (sur-
face waves are a class of gravity modes), have smaller frequencies, hence longer periods, as their
wavenumber increases. For gravity modes, the shortest period is the sound-crossing time. The pe-
riod of oscillation in luminosity of this white dwarf is much longer than the sound-crossing time,
implying strongly that this is not a pressure mode and, due to characteristic frequencies in the
spectrum, is believed to be dominated by gravity modes.

20. A perfectly conducting interstellar cloud is threaded with a magnetic field.

(a) How does the magnetic field and magnetic pressure scale with the size R of the cloud, assuming
that magnetic flux is frozen?
For a perfectly conducting fluid, the magnetic flux is fixed. Thus, we have that BR2 ≡ constant.
From this we get that:

B ∝ R−2

pB =
B2

8π
∝ R−4

(b) If we assume adiabatic collapse of the cloud, such that P ∝ ρ5/3, where ρ is the cloud density,
how does the pressure scale with the size R of the cloud?
Assuming free-fall adiabatic collapse, the density ρ ∝ R−3. The pressure within the cloud goes
as R−5, assuming adiabatic free-fall collapse.

(c) Based on what you have found, will magnetic fields eventually halt the free-fall collapse of this
cloud? Why or why not?
Gravity is attractive, but the gas pressure and magnetic pressure are both repulsive. However,
if we assume that the gas remains adiabatic when collapse is finally halted, it is not possible for
the magnetic pressure (in this instance) to halt the collapse – the magnetic pressure increases
as the cloud size decreases, but the gas pressure increases faster.

21. From the equation of state of a relativistic degenerate Fermi gas, P = Kρ4/3, show that these stars
have a fixed mass and undefined radius – that is, show that the mass is given by a constant value
independent of the radius of the star. Take K to be something dependent only on physical constants
(Planck’s constant, the speed of light, etc.) and independent of the star’s properties.
From the mass continuity equation, one gets that:

dM

dr
= 4πr2ρ

From a dimensional argument, we can let:

M ' R3ρ

Now from the expression for hydrostatic equilibrium:

dP

dr
= −GMρ

r2
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That an estimate for the pressure is given by the following:

P ' GMρ

R
= Kρ4/3

GM

RK
= ρ1/3 =

M1/3

R
M2/3 = K/G

M = (K/G)3/2

In the above equation, the radius has “fallen out” – the star’s structure is independent of the radius
and has a fixed mass. A specific example is the Chandrasekhar limit for white dwarfs and neutron
stars, and the Eddington radiative limit for very massive, luminous stars.

22. What gives rise to the Gamow peak in nuclear reactions? Why is quantum mechanical tunneling
required to explain the reaction rate in stars? The height of the potential barrier is approximately
50 MeV, and the plasma temperature T ∼ 107 K.
The Gamow peak arises from the quantum mechanical tunneling by particles, with much smaller
kinetic energy than the barrier energy, across the barrier. A typical thermal energy of particles
in the center of the sun is 1 keV ¿ 50 MeV. Therefore, without including the effects of quantum
mechanics, there would be no nuclear reactions at the temperatures and densities at the sun’s core.

The tunneling probability across the barrier goes as p ∝ exp
(

−bE1/2
)

(i.e., increases as the energy

E increases), while the particle distribution goes as E1/2 exp (−E/kBT ) for all E. This Gamow peak
appears at the tail of the particle distribution, where the tunneling probability is increasing, and
manifests itself as a very small, yet the only source, of nuclear reactivity in the plasma at these low
temperatures.

23. The solar wind has a density of 10 protons cm−3 and an average speed of 500 km s−1 at 1 AU.

(a) What is the proton flux at 1 AU? Your answer should be in units of cm−2 s−1.
Proton flux Fp = nv = 10× (5× 107) = 5× 108 protons cm−2 s−1.

(b) What is the mass loss rate, in M � yr−1, due to the solar wind?
The number rate loss of protons due to the solar wind:

ṀSW = 4πR2FpmH

We take R = 1 AU = 1.5 × 1013 cm. The mass of a proton mH = 1.66 × 10−24 gm. Therefore
the mass loss rate:

ṀSW = 2.35× 1012 gm s−1 = 7.41× 1019 gm s−1 = 3.7× 10−11M � yr−1

(c) If we assume that the particle velocity does not change as we change distances from the sun,
how does number density scale with d, the distance to the sun?
No particles are being created or destroyed. Therefore ṀSW is independent of radius. Further-
more, since ṀSW = 4πR2nvmH , and if v is a constant, then we have that n ∝ R−2.

24. The sun has mass of M � = 2× 1033 gm and a radius of R � = 7× 1010 cm.
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(a) What is the gravitational acceleration at the sun’s surface?

g � =
GM �

R2�
= 2.73× 104 cm s−2

(b) What is the maximum angular frequency Ω at which the star will break up? That is, find the
Ω such that the centrifugal acceleration balances out the gravitational acceleration.
Balance out the centrifugal acceleration with the gravitation acceleration:

GM?

R2?
= Ω2R?

Ω =

√

GM?

R3?
= 6.24× 10−4 s−1

(c) What period does this correspond to?

Ω =
2π

P

P =
2π

Ω
= 104 s

25. A proton, with rest mass of 980 MeV,is travelling at 0.99999 c, where c is the speed of light, relative
to an observer on Earth.

(a) What is the total energy (kinetic + rest mass) of the photon as seen from Earth?
The total energy:

E =
mc2

√

1− v2/c2
≈ mc2
√

2δv/c
=
980 MeV√
2× 10−6

= 693 GeV

Where δv = c− v. Here we used the following Taylor expansion:
(

1− v2/c2
)1/2

=
(

1− (1− δv/c)2
)1/2

=
(

2δv/c− δv2/c2
)1/2 ≈

√

2δv/c

(b) What is the momentum of the photon as seen from Earth?

p =
mv

√

1− v2/c2
≈ mc
√

2δv/c
=
980 GeV/c√
2× 10−6

= 693 GeV/c

Note that for photons of energy, say, 1 GeV, its momentum is 1 GeV/c.

(c) The sun emits radiation at a characteristic wavelength of 5000 Å. What is the wavelength and
energy of this photon in the rest frame of the proton? Assume that the photon arrives head-on
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to the photon.
In the frame of the proton, the radiation will be heavily blueshifted according to this formula:

λ

λ0
=

√

1− v/c

1 + v/c
≈
√

δv

2c

λ = 3.89 Å

26. The energy levels of the neutral hydrogen atom go as En = −13.6 eV/n2. The degeneracy of the
energy levels goes as 2n2. At T = 1000 K:

(a) What are the relative occupancies of the n = 2 and n = 3 levels relative to n = 1?
Denote f1, f2, and f3 as the occupancies of the n = 1, n = 2, and n = 3 states, respectively.
Then:

f2
f1
=
2× 22 exp

(

E0

22kBT

)

2× exp
(

E0

kBT

) = 1.57× 10−51

For the n = 3 state:

f3
f1
=
2× 32 exp

(

E0

32kBT

)

2× exp
(

− E0

kBT

) = 1.07× 10−60

(b) Assuming the density of hydrogen is ρ = 10−3 gm cm−3. What are number densities of hydrogen
in the neutral state, in the n = 1 state, and in the n = 2 state?
In this approximation, we can take the number density of the n = 1 state as:

n1 =
ρ

mH

= 6.022× 1020 cm−3

The number densities of n = 2 and n = 3 neutral hydrogen atoms:

n2 ≈
f2
f1

n1 = 9.45× 10−31 cm−3

n3 ≈
f3
f1

n1 = 6.44× 10−40 cm−3

27. Consider the following about degenerate gases:

(a) Using the uncertainty principle, show that the average energy of a particle in a nonrelativistic

degenerate gas is given by the following: E ∼ ~
2n2/3

2m
, where n is the particle number density and

m is the particle mass.
The average spacing between particles of number density n is ∆x = n−1/3. Using the uncertainty
principle:

∆pn−1/3 = ~

∆p = ~n1/3
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The representative kinetic energy of the nonrelativistic particles is ε ∼ (∆p)2 / (2m). Therefore
the particle energy:

ε ∼ (∆p)2

2m
=

~
2n2/3

2m

(b) Show that the pressure in a nonrelativistic degenerate gas goes as n5/3.
The pressure scales as the energy density. Then energy density goes as E ∼ εn, so that P ∼ εn.

E ∼ εn ∼ ~
2

2m
n5/3

(c) Using the above expression for the energy, find the critical number density n at which a degen-
erate electron gas becomes relativistic.
To find the number density at which a degenerate Fermi gas becomes relativistic, set the average
kinetic energy to the rest energy of the particle:

ε = mc2 =
~
2n2/3

2m
n = 23/2 (mc/~)3

The result n = (mc/~)3 is also acceptable.

28. Consider the opacity of two fully radiative stars. The opacity of star B is 10 times larger than the
opacity of star A.

(a) If it takes a time τ for photons to radiate out of star A, how many times τ does it take for
photons to radiate out of star B?
Radiative diffusion of photons is a “random walk” process. If everything else stays the same
but the opacity increases by a factor of 10, then the mean free path decreases by a factor of 10.
This requires 102 = 100 more steps to reach the star’s surface. Therefore it takes 100τ for a
photon to radiate out through the surface.

(b) Assuming both stars have the same internal energy (same radius, same mass, and same internal
structure). How much larger is the luminosity of star A relative to star B? Use dimensional
analysis to determine the answer.
Assuming the stars have the same internal energy. Assume radiation is the only way to transport
energy in both stars. For the star with opacity 10 times higher, A given photon will leak out
over 100 times the length of the lower-opacity star. Therefore, the luminosity of the opaque star
will be 100 times lower.
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